“A Source-Level
Estimation and Optimization Methodology
for the Execution Time and Energy Consumption

of the Embedded Software*

Daniele Paolo Scarpazza
Politecnico di Milano
January 31st, 2006

This thesis at a glance:

e Estimation:

- designers frequently need to estimate the
{time, energy} consumption of significant clusters
of operations;

— current approaches (ISS, STA, SLI)
do not solve the problem effectively;

— we propose a new method (SLE)
which is flexible, fast, accurate

* Optimization:
- exploring source-level optimizing transformation is a slow task

- many approaches involve ISS

- we propose a new flow which is short-loop, scalable, modular

Estimation

Previous approaches are inadequate

Static Timing Analys (STA) cannot deal with dynamism:
- its main objective is the determination of the WCET

- cannot deal with dynamic features:
unbounded loops, recursion, dynamic fn ref;

- unfortunately, code is becoming more and more dynamic
(e.g. object based video coding, wireless ad-hoc networks, ...)

Instruction-Set Simulation (ISS) is slow and at a low level:

- itis 10k-100k times slower than application execution;
- provides estimate at assembly level whereas developer works at source level;

- estimates are difficult to interpret: not much helpful for optimization:
(deep pipelines, superscalarity, wide-issue, speculation, branch prediction, ...)

ISS + gprof provide estimates only at a function level
Atomium/PowerEscape is source-level, but only for memory aspects
SoftExplorer is a static technique

— user interaction required to determine loop iterations: unthinkable for real sized projects

Compilation-based approaches do not provide link to source level
SIT is source level (good!) but still unable to resolve chosen clusters
Black-box techniques do not provide any link with code

[Puschner8y,...,
Chen01]

[Brooks00,
Sinha01, Qin03]

[Simunic01]

[Bormans99,
Arnout05]

[Senn02]

[Lajolo99]
[RavasiO3]

[Muttreja04]

What we do, and others can't

* Motivational example: we consider a sample fragment of real code
(FFT implementation, [Guthaus01])

74 for (i=rev=0; I < NunBits; i++)
75 {

76 rev = (rev << 1) | (index & 1);
77 | ndex >>= 1;

78 }

* After the analysis, we provide estimates for the individual operator instances

Linel'ﬁme |T|n'u3{%} | Energy |Ener|;:|_l.nﬂ}| Code

74 z0z30ms [Josozsrul] fordi=rev=0; i< HUMBTTS; i++)
75 0000 s 0,000 J 1

76 zFacms] 21 F ol] rev = (rew << 1) | Cindex &13;
77 olzesms I] FzEmeul] index rr=d;

78 0,000 5 0000] T

* Currently, no other method can provide this detailed results

* Estimation at the source-level is 10,000 x faster than an ISS

How we perform estimation

Input source code

Abstract syntax tree

Atoms

Abstract instructions

Time and energy

if ((a& (b<c+d) [| e]||] g & (h|i)) &&j) {
d = (a == b+c);
} else {
g=e=1f << 2

V S N

Abstract translation model

LogicLeaf = 1 jump

LogicTop = 1 alul + 0.5 jump
Switch =2alul +1
jump

If 1 jump

Target Platform Characterization

(178 mA, 1.715 cycles)
(170 mA, 1.0 cycles)

alul
jump

Figure break-up for node 17

Single-execution cost Execution count
¢, =1 LogicTop n =4327

$

Execution cost
C,=n, - c_= 4327 LogicTop

Execution cost
C,=n_-c_= 4327 alul + 2163.5 jump

\J
Execution cost
C17 =n,-c = (1.311 ms, 471.8 mJ)

1

The cost of syntax elements

* Step 1 (Analysis) associates a single-execution cost c(1)
to each syntax node, expressed as sum of atoms

* the cost is due to 3 contributions: c(i) = ci(i) + cf(i) + cc(i)

* contributions are calculated by an attribute grammar over the AST;

Attribute Name Defined for
k synthesized constancy expressions
e synthesized constant value expressions
t synthesized real result type expressions
v inherited valueness expressions
r inherited restricted result type expressions
f inherited translation flavor expressions and statements
ci synthesized inherent cost expressions and statements
cc synthesized conversion cost expressions and statements
c¢f inherited flow control cost expressions and statements

¢ synthesized total cost expressions and statements

Estimation: the tool flow

Program sources

L]

Step 1: Analyzing

'

decorated syntax tree

'

Step 2: Instrumenting

'

instrumented source code

v

Step 3: Compiling

v

instrumented object code

Pseudo-compiler

< profiling library >
|

y

Step 4: Linking
|

'

Step 5: Running the instrumented executable

v

execution counts

< kernel instr. cost model >
|

!

Step 6: Post-processing

Y

line-by-line energy statistics

Key:

data

tool

Q library

Results: accuracy and speed

* Experimental Setup

- comparison against Simlt-Arm
(3 Reference (cycles) [Qin03]
o - current figures from JouleTrack
100} [}! .. } (energy) [SlIlhEiOl]

o] e | e - modelling for SA1100, 206 MHz, 1.5V
0 o 1 O - 24 benchmark from MiBench

[GuthausO1]
mm LI m A mmm ________ m e Accuracy
0 1 2 3 4 5 & 7 8 |_1[l—| 10 11 12 13 14 I'_]|:'-_| 16 '_]‘“_‘ - an mOdUIO €ITror = 15% E’ < 170/0 T

Henchmarls - coefficients of correlation =
] Reference] 0-978 E, 0.960 T

goo|{C3 Estimated(.......................

1L * Speed
g] shorter than ISS

— simulation only 2.2x slower

. I . . N T T T - than normal eXecution
m till Fﬂmmm e Robustness

Benchmarks ' - 24/24 MiBench projects
successfully processed

100f- -

Optimization

A short-loop exploration methodology is needed

Long exploration loop

Initial source code

Short exploration loop

v

Front-end

Initial source code

v

v

>

Influence metrics

Source-level
estimation

v

v

Transformation
steering

Source-level
profiles

v

v

Transformation
application

Influence metrics

v

v

Optimized
source code

Transformation
steering

v

v

Compiler

Transformation
application

v

v

Optimized
object code

Optimized
source code

v

v

Instruction set
simulator

Compiler

v

v

Instruction-level
profiles

Optimized
object code

What we do and others can't

[54 Project Line|Time Time(%)| Energy | Energy(3%| Code E
b B image.c 104 B.090ms 1103 m] if{computed[cur¥]lcurk] = 0) {
o I I I lport a prOJ ect [include 195 0.000 s 000 | int i'.:j;
gimage.h 196 6.674 ms 3.994 m)] for(i = (curk =07 -1 :0); i = (curX = {width - ...
3\en:filner h 197 21813 ms 13.452 m) for(j = (cur¥ = 07-1:0); j = (curf = (height.,
=_ ' 198 54121 msl 82.078 m) . result = result + mask[i + 3 *j + 4] * ima..,
& mainec 199 2.173 ms]] L34l m) [] computed[cury]lcurX] = absiresult); ||
200 0.000 s] 0000) [| 1]
201 0.000 5] oooo |] il
202 11.091 ms| | 6440 m) [| ificomputedlcurt]lcurk] = laThreshald) { E
File Ti me Ener gy
° . i mage. c 21.638 ps 16.561 pJ
Analyze 1t mai n. ¢ 28.962 ps 21.158 uJ
vertfilter.c 377.672 ms 421.048 mJ
(glibc) 305.800 ps 622.000 pJ
TOTAL 378.029 ns 421.708 mJ
|D 1.000000 - Inline this function | =

image.c pngGetimage
See more details

o G-et Source_level Inlining small functions will resultin an energy gain due to the fact that there

is no context switch and no memory copy for argument passing. The increased
code size might introduce energy penalties due to cache misses. Itis important

Optimization to considerinlinin especially when function calls are very close

to each other, such asin small loops.
See code

direCtiveS, { ImageTimage = png_get_rowslimageData->data, imageData-=info);
generated at the euminans

D 0.846667 — Unroll the for loop

source Jp 0.700222 - Unroll the for laap]

D 0.700222 — Unroll the for loop

level [p 0.619200 - Substitute the function with @ macro

D 0.619200 - Substitute the function with a macro
[0.565111 — Unroll the far loop

File Ti me Ener gy

i mage. c 21.638 ps 16.561 uJ
o App]y them i n. ¢ 28.962 ps 21.158 W

vertfilter.c 356.222 ms 396.261 m

and see the result ToTAL 356509 396 901

ns

What a short-loop methodology needs

Problem

source code
analysis

influence
metrics

transformation
steering

transformation
application

Task

analyze the code and determine
which are the critical sections

determine what is the gain in
applying a trf over a section

decide which transformation
to apply and where

apply transformation
on the source code

Additional Requirements

analysis must be performed at source level;
profile data must be available at source level

SLE is the first approach

Many exist, e.g. [Brandolese03]

steering engine must operate
automatically on source-level data
provided by above analysis and metrics

sl None exist!

e.g. [suif94]

How we perform transformation steering

* We employ a Network of Fuzzy Rules =~ complete information
- on the analyzed program
(syntax, profiles, ...)

e It is a modified version of a neural
network; differences: v

RS
- 4»
— weights and connections model explicitly | -
transformation influence metrics; 74> 4:
| | - -
- ~ 1 § |
each ru.le (neurqg) accesses cgmplete | L
syntactic and profiling information; i
| |
: I
* Base component: NFR rule . — >
Source-level 2 % | R
inf tion g3 il
informa &2 i
Input scope .§§§‘———*
——F o 25 e
scope 1 O § i~ . L
Rule § H L e
Input score Output e
] score ‘”‘L - ™
| !
; 1 . N
* Advantages: L. I
a s ‘
- scalable O(n-Q) |
| | |
- modular no IP disclosed |
()
BN S

Input layer Output layer

Output optimization directives to user

AcFilter
100%

Experimental results —

90% — T: -13.68%
") E: -5.96%
* Modelled transformations: %
1) loop unrolling L A
2) function inlining Hough
3) function replacement with macro 100%
4) common subexpression elimination
5) strength reduction 0%
6) type conversion elimination - D D T: -20.18%
7) standard library function factorization E: -10.58%
8) memory allocation factorization 0% | | | | |
9) argument passing via pointer 0 1 2 4 5
10)function specialization 100% ,J_\
* Benchmarks: . =
. . . . ° . 0
4 applications (audio filter, . E: g-gg 0//0
.. 6 D -o. 0
hough transform, dijkstra, FFT); ™
. 70% I I \ \ \
* Energy gains: 5-22% o 12 3 4 s
100%
* Time gains: 8 -20 %
. \) T: 22.27%
80% — - E: -22.01%
70% I \ \ \

