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This thesis at a glance:

e Estimation:

- designers frequently need to estimate the
{time, energy} consumption of significant clusters
of operations;

— current approaches (ISS, STA, SLI)
do not solve the problem effectively;

— we propose a new method (SLE)
which is flexible, fast, accurate

* Optimization:
- exploring source-level optimizing transformation is a slow task

- many approaches involve ISS

- we propose a new flow which is short-loop, scalable, modular



Estimation



Previous approaches are inadequate

Static Timing Analys (STA) cannot deal with dynamism:
- its main objective is the determination of the WCET

- cannot deal with dynamic features:
unbounded loops, recursion, dynamic fn ref;

- unfortunately, code is becoming more and more dynamic
(e.g. object based video coding, wireless ad-hoc networks, ...)

Instruction-Set Simulation (ISS) is slow and at a low level:

- itis 10k-100k times slower than application execution;
- provides estimate at assembly level whereas developer works at source level;

- estimates are difficult to interpret: not much helpful for optimization:
(deep pipelines, superscalarity, wide-issue, speculation, branch prediction, ...)

ISS + gprof provide estimates only at a function level
Atomium/PowerEscape is source-level, but only for memory aspects
SoftExplorer is a static technique

— user interaction required to determine loop iterations: unthinkable for real sized projects

Compilation-based approaches do not provide link to source level
SIT is source level (good!) but still unable to resolve chosen clusters
Black-box techniques do not provide any link with code
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What we do, and others can't

* Motivational example: we consider a sample fragment of real code
(FFT implementation, [Guthaus01])

74 for (i=rev=0; I < NunBits; i++)
75 {

76 rev = (rev << 1) | (index & 1);
77 | ndex >>= 1;

78 }

* After the analysis, we provide estimates for the individual operator instances
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* Currently, no other method can provide this detailed results

* Estimation at the source-level is 10,000 x faster than an ISS




How we perform estimation

Input source code

Abstract syntax tree

Atoms

Abstract instructions

Time and energy

if ( (a& (b<c+d) [| e]||] g & (h|i) ) &&j) {
d = (a == b+c);
} else {
g=e=1f << 2

V S N

Abstract translation model

LogicLeaf = 1 jump

LogicTop = 1 alul + 0.5 jump
Switch =2alul +1
jump

If 1 jump

Target Platform Characterization

(178 mA, 1.715 cycles)
(170 mA, 1.0  cycles)

alul
jump

Figure break-up for node 17
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The cost of syntax elements

* Step 1 (Analysis) associates a single-execution cost c(1)
to each syntax node, expressed as sum of atoms

* the cost is due to 3 contributions: c(i) = ci(i) + cf(i) + cc(i)

* contributions are calculated by an attribute grammar over the AST;

Attribute Name Defined for
k  synthesized constancy expressions
e  synthesized constant value expressions
t synthesized real result type expressions
v inherited valueness expressions
r  inherited restricted result type expressions
f  inherited translation flavor expressions and statements
ci  synthesized inherent cost expressions and statements
cc  synthesized conversion cost expressions and statements
c¢f inherited flow control cost expressions and statements

¢  synthesized total cost expressions and statements



Estimation: the tool flow

Program sources

L]

Step 1: Analyzing

'

decorated syntax tree

'

Step 2: Instrumenting

'

instrumented source code

v

Step 3: Compiling

v

instrumented object code

Pseudo-compiler

< profiling library >
|

y

Step 4: Linking
|

'

Step 5: Running the instrumented executable

v

execution counts

< kernel instr. cost model >
|

!

Step 6: Post-processing

Y

line-by-line energy statistics

Key:

data

tool

Q library




Results: accuracy and speed

* Experimental Setup

- comparison against Simlt-Arm
(3 Reference (cycles) [Qin03]
o - current figures from JouleTrack
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Optimization



A short-loop exploration methodology is needed

Long exploration loop

Initial source code

Short exploration loop
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What we do and others can't

[54 Project Line|Time Time(%)| Energy | Energy(3%| Code E
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o G-et Source_level Inlining small functions will resultin an energy gain due to the fact that there

is no context switch and no memory copy for argument passing. The increased
code size might introduce energy penalties due to cache misses. Itis important

Optimization to considerinlinin especially when function calls are very close

to each other, such asin small loops.
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What a short-loop methodology needs

Problem

source code
analysis

influence
metrics

transformation
steering

transformation
application

Task

analyze the code and determine
which are the critical sections

determine what is the gain in
applying a trf over a section

decide which transformation
to apply and where

apply transformation
on the source code

Additional Requirements

analysis must be performed at source level;
profile data must be available at source level

SLE is the first approach

Many exist, e.g. [Brandolese03]

steering engine must operate
automatically on source-level data
provided by above analysis and metrics

sl None exist!

e.g. [suif94]



How we perform transformation steering

* We employ a Network of Fuzzy Rules =~ complete information
- on the analyzed program
(syntax, profiles, ...)

e It is a modified version of a neural
network; differences: v
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— weights and connections model explicitly | -
transformation influence metrics; 74> 4:
| | - -
- ~ 1 § |
each ru.le ( neurqg) accesses cgmplete | L
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| |
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* Base component: NFR rule . — >
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* Advantages: L. I
a s ‘
- scalable O(n-Q) |
| | |
- modular no IP disclosed |
( )
BN S

Input layer Output layer

Output optimization directives to user



AcFilter
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Experimental results —

90% — T: -13.68%
" ) E: -5.96%
* Modelled transformations: %
1) loop unrolling L A
2) function inlining Hough
3) function replacement with macro 100%
4) common subexpression elimination
5) strength reduction 0%
6) type conversion elimination - D D T: -20.18%
7) standard library function factorization E: -10.58%
8) memory allocation factorization 0% | | | | |
9) argument passing via pointer 0 1 2 4 5
10)function specialization 100% ,J\_\
* Benchmarks: . =
. . . . ° . 0
4 applications (audio filter, . E: g-gg 0//0
.. 6 D -o. 0
hough transform, dijkstra, FFT); ™
. 70% I I \ \ \
* Energy gains: 5-22% o 12 3 4 s
100%
* Time gains: 8 -20 %
. \ ) T: 22.27%
80% — - E: -22.01%
70% I \ \ \






