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Abstract

Recently, a novel model, called Tile Rewriting Grammar (TRG), has been in-
troduced to apply the generative grammar approach to picture languages, or
2D languages. In many respects, the TRGs can be considered the equivalent
of context-free (CF) grammars for 2D languages. However, the possibility to
investigate applications was precluded so far by the lack of a good parsing al-
gorithm. We propose a parsing algorithm for TRGs, which can be described as
an extension to 2D of Cocke, Kasami and Younger’s classical parsing technique
for 1D context-free grammars.

1 Introduction

Traditionally, several approaches were conceived to describe picture languages.
Authors in [1] relate and compare these approaches, and they identify the REC
class as the correspondent of regular languages for 2D languages. For example,
they report Giammarresi and Restivo’s Tiling Systems (TS) [2] and Inoue and
Nakamura’s 2D Online tessellation Automata (2OTA) [3] as formalisms which
generate languages in REC. More recent attempts to define an analogous of CF
languages for pictures were less successful, especially as far as expressibility
and theoretical relations with REC are concerned (see for instance [4]).

A new formal model for context-free picture languages, called Tile Rewrit-
ing Grammar (TRG) has been recently introduced in [5, 6]. TRGs ideally orig-
inate from the results presented in [1], with a twofold aim. First, to define a
context-free formalism with theoretical relationships with REC comparable
with those between string CF grammars and regular languages. Secondly, to
obtain a descriptive device having elegance and descriptive adequacy analo-
gous to CF string grammars.

However, TRGs lacked so far an associated parsing technique, and this
made it hard to conceive any applications for them. Moreover, to the best of
our knowledge, even for picture grammars (where pictures are defined as 2D
arrays of symbols of a finite alphabet) there are no good parsing algorithms in
literature. There exist works in the field of visual languages, such as [7], but
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they consider a quite different approach to 2D descriptions. An early attempt
to parse Rosenfeld’s Array Grammars [8] is in [9], but it seems to be limited to
interactive derivations of pictures.

In this paper we address the problem of parsing TRGs, which is an impor-
tant step in 2D language research. We believe that the availability of an efficient
parsing technique for TRGs will enable a wide class of applications of this de-
scriptive formalism. We propose a parsing approach which follows the classical
Cocke, Kasami and Younger’s technique [10]: it works bottom-up, and recog-
nizes subpictures as result of application of grammar rules, starting from the
simplest subpictures of the input, i.e. its pixels.

This paper is organized as follows. In Section 2 we introduce 2D languages,
notations, and Tile Rewriting Grammars. In Section 3 we describe the algo-
rithm. In Section 4 we draw the conclusions. In the appendix we illustrate a
complete example of our algorithm recognizing an input picture.

2 Pictures and Grammars

In this section we recall definitions and notations needed for 2D languages,
together with the TRG model. Most of them come from [1] and [6].

2.1 Pictures and subpictures

Definition 1. If a picture p has m rows and n columns, we write that |p| = (m,n),
and |p|row = m, |p|col = n. Each element pi,j is called a pixel. For a finite alphabet
Σ, the set of pictures is Σ∗∗. For m,n ≥ 1, Σ(m,n) denotes the set of pictures of size
(m,n). If all pixels are identical to C ∈ Σ the picture is said homogeneous and
denoted as C-picture.

Definition 2. Subpicture. Let p be a picture of size (m,n) and q a picture of size
(m′, n′). We say that q is a subpicture of p at position (i, j), and we write:

q E(i,j) p

if m′ ≤ m,n′ ≤ n and there exist integers i, j, with (i ≤ m−m′+1, j ≤ n−n′+1),
such that qi′,j′ = pi+i′−1,j+j′−1 for all 1 ≤ i′ ≤ m′, 1 ≤ j′ ≤ n′. The shorthand
notation q E p means that ∃i, j(q E(i,j) p).

Example 1. If p =

a d g j m
b e h k n
c f i l o

 and q =
(

e h k
f i l

)
, then: q E(2,2) p.

Definition 3. Substitution. If p, q, q′ are pictures, q E(i,j) p, and q, q′ have the same
size, then p[q′/q](i,j) denotes the picture obtained by replacing the occurrence of q at
position (i, j) in p with q′.
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Example 2. If p and q are as in the previous example, and q′ =
(

Z Z Z
Z Z Z

)
, then:

p[q′/q](2,2) =

a d g j m
b Z Z Z n
c Z Z Z o

 .

Definition 4. For a picture p ∈ Σ∗∗ the set of subpictures (or tiles) of size (m,n)
is:

Bm,n(p) = {q ∈ Σ(m,n) | q E p}.

B1,n is defined only on Σ(1,∗) (horizontal strings), and Bm,1 only on Σ(∗,1) (vertical
strings). For brevity, for tiles of size (1, 2), (2, 1), or (2, 2), we introduce the following
notation:

JpK =

B1,2(p), if |p| = (1, n), n > 1
B2,1(p), if |p| = (m, 1),m > 1
B2,2(p), if |p| = (m,n),m, n > 1

Definition 5. Horizontal Overlapping. If p and q are pictures of the same size
(m,n) and

∀i, j, 1 ≤ i ≤ m, 2 ≤ j ≤ n : pi,j = qi,j−1,

then p ‖ q, also called the horizontal overlapping of p and q, denotes a picture of size
(m,n + 1) such that:

∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n : (p ‖ q)i,j = pi,j ∧

∀i, j, 1 ≤ i ≤ m, 2 ≤ j ≤ n + 1 : (p ‖ q)i,j = qi,j−1.

If one of the above conditions is not satisfied, then p ‖ q is not defined.

Definition 6. Vertical Overlapping. If p and q are pictures of the same size (m,n)
and

∀i, j, 2 ≤ i ≤ m, 1 ≤ j ≤ n : pi,j = qi−1,j ,

then p
====q , also called the vertical overlapping of p and q, denotes a picture of size

(m + 1, n) such that:

∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n :
(

p
====q

)
i,j

= pi,j ∧

∀i, j, 2 ≤ i ≤ m + 1, 1 ≤ j ≤ n :
(

p
====q

)
i,j

= qi−1,j .

If one of the above conditions is not satisfied, then p
====q is not defined.



4 Daniele Paolo Scarpazza

2.2 Rectangles, ceilings and coordinates

Definition 7. Operators � and �. A coordinate is a pair of positive integers.
Given two positive integers r and c, the notation r � c denotes the set of coordinates
{1, 2, ..., r} × {1, 2, ..., c}.
Given a set of coordinates C = {(i1, j1), (i2, j2), ...} and a coordinate (i, j), the nota-
tion C � (i, j) denotes the following set of coordinates:

C � (i, j) = {(i1 + i− 1, j1 + j − 1), (i2 + i− 1, j2 + j − 1), ...}.

Intuitively, operator � translates coordinates by an offset (i− 1, j − 1).

Definition 8. Rectangle. Any set of coordinates that can be written in the form r �
c � (i, j) is said a rectangle. The notation R(r � c) indicates the set of all rectangles
α such that α ⊆ r � c.

Note that r � c � (i, j) contains the coordinates of a subpicture of size (r, c),
such that coordinate of top-left pixel is (i, j). For any positive r and c, r � c is a
rectangle and r � c = r � c � (1, 1).

Example 3. 2 � 3 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} is a rectangle. 2 � 3 �
(4, 5) = {(4, 5), (4, 6), (4, 7), (5, 5), (5, 6), (5, 7)} is a rectangle. An intersection be-
tween rectangles can be a rectangle: 2� 3� (4, 5)∩ 2� 3� (5, 6) = 1� 2� (5, 6).

Definition 9. Ceiling. Given a set of coordinates C, the ceiling of C, denoted as dCe,
is the smallest rectangle which is either a superset or equal to C.

Example 4.

d(1 � 1 � (3, 4)) ∪ (2 � 3 � (5, 7))e =
= d{(3, 4), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9)}e =
= 4 � 6 � (3, 4)

Definition 10. Given a picture p such that |p| = (m,n) and a rectangle r � c� (i, j),
the notation p[r � c � (i, j)] indicates the subpicture q such that |q| = (r, c) and
q E(i,j) p.

Definition 11. If q E(i,j) p, we define coor(i,j)(q, p) as the set of coordinates of all the
pixels of p where q is located: |q|row � |q|col �(i, j). Conventionally, coor(i,j)(q, p) = ∅
if q is not a subpicture of p. If q = p, we write coor(p) instead of coor(1,1)(p, p).

Example 5. If p and q are the same as in the previous examples,
coor(2,2)(q, p) = {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}.
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2.3 Tile Rewriting Grammars

The TRG model combines isometric rewriting rules (like in array grammars
[8]) with tiles, defining a locally-testable language. This section recalls the TRG
model through its main definitions. For a complete description, see [6].

Definition 12. Locally testable language1. Given a finite set of tiles

ω = {t1, t2, ...} ⊆ Σ(i,j),

the locally testable language defined over it, indicated as LOC(ω), is the set of pic-
tures p ∈ Σ∗∗ such that Bi,j(p) = ω.

Definition 13. A Tile Rewriting Grammar (TRG, for short) is a tuple (Σ, N, S, R),
where Σ is the terminal alphabet, N is a set of nonterminal symbols, S ∈ N is the
starting symbol, R is a set of rules. R may contain two kinds of rules:

Fixed size: A → t, where A ∈ N , t ∈ (Σ ∪N)(m,n), with m,n > 0;
Variable size: A → ω, where A ∈ N , ω ⊆ (Σ ∪N)(m,n), with m,n ∈ {1, 2}.

The right-hand side of a fixed size rule is a tile; the right-hand side of a variable
size rule is a set of tiles. A fixed size rule A → t rewrites an A-subpicture (iso-
metric with t) as t. A variable size rule A → ω rewrites an A-subpicture as one
of the pictures which can be tiled using all the tiles in ω.

The next concepts constrain the derivations in order to obtain a 2D analo-
gous of the derivation tree.

Definition 14. Equivalence. Let γ be a given equivalence relation on coor(p). We
use the notation (x, y)

γ∼ (x′, y′) to indicate that two coordinates (x, y) and (x′, y′) are
equivalent according to γ.
Given two subpictures q, q′ of p such that q E(i,j) p, q′ E(i′,j′) p, we say that q and
q′ are γ-equivalent, and we write q

γ∼ q′, iff for all pairs (x, y) ∈ coor(i,j)(q, p) and
(x′, y′) ∈ coor(i′,j′)(q′, p) it holds (x, y)

γ∼ (x′, y′).

Definition 15. Maximality. A homogeneous C-subpicture q E p is called maximal
with respect to relation γ iff for every γ-equivalent C-subpicture q′ it is

coor(q, p) ∩ coor(q′, p) = ∅ ∨ coor(q′, p) ⊆ coor(q, p).

In other words, q is maximal if any C-subpicture of p which is equivalent to q is
either a subpicture of q or it is not overlapping.

Definition 16. Derivation. Consider a grammar G = (Σ, N, S, R), let p, p′ ∈ (Σ ∪
N)(m,n) be pictures of identical size, and let γ, γ′ be equivalence relations over coor(p).
We say that (p′, γ′) derives in one step from (p, γ), written

(p, γ) ⇒G (p′, γ′)
1 Several different notions of local testability appear in literature. See [6] for more on

the topic.
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iff for some rule A → . . . ∈ R there exists in p a A-subpicture r E(i,j) p, maximal with
respect to γ, and p′ is obtained substituting r with a picture s, that is

p′ = p[s/r](i,j)

where s is defined as follows:

Fixed size: if A → t, then s = t;
Variable size: if A → ω, then s ∈ LOC(ω).

Additionally, γ′ is obtained from γ as follows. Let z be coor(i,j)(r, p). Let Γ be the
γ-equivalence class containing z. Then, γ′ is equal to γ, for all the equivalence classes
6= Γ ; Γ in γ′ is divided in two equivalence classes, z and its complement with respect
to Γ (= ∅ if z = Γ ). More formally:

γ′ = γ \ {((x1, y1), (x2, y2)) | ((x1, y1) ∈ z) xor ((x2, y2) ∈ z)} .

The subpicture r is said the application area in the derivation step. We say that

(p′, γ′) is derivable from (p, γ) in d steps, written (p, γ) d⇒G (p′, γ′), iff p = p′ and
γ = γ′, when d = 0, or there are a picture r and an equivalence relation γ′′

such that (p, γ) d−1=⇒G (r, γ′′) and (r, γ′′) ⇒G (p′, γ′). We use the abbreviation
(p, γ) ∗⇒G (p′, γ′) for a derivation with d ≥ 0 steps.

Definition 17. The picture language defined by a grammar G (written L(G)) is the
set of p ∈ Σ∗∗ such that, if |p| = (m,n), then(

S(m,n), coor(p)× coor(p)
)

∗⇒G (p, γ)

for some γ. For short, we write S
∗⇒G p.

Note that the derivation starts with a S-picture, isometric with the terminal
picture to be generated, and with the universal equivalence relation over the
coordinates.

Example 6. An example TRG grammar is G = (Σ, N, S, R), as follows:

Σ = {x, o}
N = {S, A, B}

R =

8>><>>:R1 : S →
s

A A B B
A A B B

{
, R2 : A →

u

ww
v

x x x
x o o
x o o
x x x

}

��
~ , R3 : B →

u

ww
v

x x x
o o x
o o x
x x x

}

��
~

9>>=>>;

This grammar generates the language of rectangles of o symbols framed by x
symbols (like the picture portrayed below). This language is local, nevertheless
we introduce it because it is convenient to illustrate the algorithm, as reported
in the appendix.
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p =

0BBBB@
x x x x x x
x o o o o x
x o o o o x
x o o o o x
x x x x x x

1CCCCA

3 Parsing TRGs

3.1 Definitions

In this section we introduce the notions of tableau, multipicture, monopicture
and compatibility, which play an important role as data structures used by our
parsing algorithm. In particular, the tableau plays the same role as the recogni-
tion table in CKY.

Definition 18. Tableau. A tableau T of size (m,n) is a matrix containing m · n
matrices, each denoted as Tr,c, 1 ≤ r ≤ m, 1 ≤ c ≤ n. Matrix Tr,c has size (m − r +
1, n− c + 1). The notation T [r � c � (i, j)] indicates the (i, j) element of matrix Tr,c,
or (Tr,c)i,j . Matrices inside T are called cells. Cells inside those matrices are called
elementary cells.

Example 7. The first cell T1,1 in a tableau T of size (m,n) is a matrix which also
has size (m,n). Cell T1,2 has one column less, and so on. Cell T1,n has one col-
umn. Cell T2,1 has one row less. Cell Tn,1 has one row. The last cell Tm,n has
size (1,1). The following figure shows an empty (3, 6)–tableau.

A tableau has exactly one cell for each of the possible sizes of a rectangle of size
smaller or equal than (m,n). More precisely, a tableau has exactly one elementary
cell for each such rectangle included in rectangle (m,n). Therefore the number
of elementary cells in a tableau is equal to:

|R(m � n)| = m(m− 1)
2

n(n− 1)
2

=
m(m− 1)n(n− 1)

4
.

Our algorithm will use one tableau to store candidates, devices used to mark
partially-recognized rules. Their definition follows.
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Definition 19. Candidate. Given a TRG grammar G = (Σ, N, S, R), and a picture
p ∈ (Σ ∪ N)(m,n), a candidate is a quadruple (Re, ωx, α, s) such that Re ∈ R,
Re = A → ω, ωx ⊂ ω, α ⊆ R(m � n) and s E p. A candidate (Re, ∅, α, s) is said
complete.

At a given time, in a tableau elementary cell there are zero or more candidates.
When an elementary cell T [r � c � (i, j)] contains a candidate (Re, ωx, α), it
means that rectangle r � c � (i, j) contains only tiles which appear in the right-
hand side of rule Re. Possibly, not all the tiles in the right-hand side of Re ap-
pear in the rectangle; the missing ones are indicated in ωx. α is called the scope
of symbols inside the rectangle, and it encodes application areas.

Definition 20. Multipicture, monopicture. Given an alphabet Σ, consider the set
Ψ = Σ×R(m�n). A monopicture over Σ is a matrix M of m×n cells, where each
cell contains an element from Ψ . A multipicture over Σ is a matrix M of m× n cells,
where each cell contains a set of elements from Ψ .

In simple words, each cell of a monopicture M of size (m,n) over alphabet
Σ contains exactly one pair (symbol, rectangle) such as (A,α), where A ∈ Σ,
and α is a rectangle contained in m � n. We call α the scope of symbol A. In
multipictures, each cell contains zero or more such pairs.

Example 8. p and p′ are pictures, and M is a multipicture.

p =


x x x x x x
x o o o o x
x o o o o x
x x x x x x

 , p′ =


A A A x x x
A A A o o x
A A A o o x
A A A x x x

 ,

M =

x, 1�1�(1, 1) x, 1�1�(1, 2) x, 1�1�(1, 3) x, 1�1�(1, 4) x, 1�1�(1, 5) x, 1�1�(1, 6)
A,4�3�(1, 1) A,4�3�(1, 1) A,4�3�(1, 1)
x, 1�1�(2, 1) o, 1�1�(2, 2) o, 1�1�(2, 3) o, 1�1�(2, 4) o, 1�1�(2, 5) x, 1�1�(2, 6)
A,4�3�(1, 1) A,4�3�(1, 1) A,4�3�(1, 1)
x, 1�1�(3, 1) o, 1�1�(3, 2) o, 1�1�(3, 3) o, 1�1�(3, 4) o, 1�1�(3, 5) x, 1�1�(3, 6)
A,4�3�(1, 1) A,4�3�(1, 1) A,4�3�(1, 1)
x, 1�1�(4, 1) x, 1�1�(4, 2) x, 1�1�(4, 3) x, 1�1�(4, 4) x, 1�1�(4, 5) x, 1�1�(4, 6)
A,4�3�(1, 1) A,4�3�(1, 1) A,4�3�(1, 1)

We now introduce the concept of tile compatibility, which is crucial for our
algorithm. It is used to check if a tile used in a picture is compatible with tiles
appearing in a rule, and its possible application area.

Definition 21. Compatibility. Consider a tile t and a sub-multipicture M of the
same size (m,n) over the same alphabet Σ. The compatibility between M and t,
denoted as M :: t, is a set of monopictures of size (m,n). Let each cell of such a
monopicture be Mi,j = (ui,j , αi,j). M ∈M :: t iff ∀(i, j), (k, l) ∈ m � n

ui,j = ti,j ∧ Mi,j ∈Mi,j ∧ (αi,j = αk,l ∧ ui,j = uk,l ∨ αi,j ∩ αk,l = ∅).

We say that M is compatible with t iff M :: t 6= ∅.
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Informally, a monopicture M ∈ M :: t contains in each cell (i, j) exactly one
pair (A,α), taken from the ones in cell (i, j) of M, with the constraint that A is
the same as ti,j . For each pair of cells in M , scopes are either disjoint or identical;
when they are identical, also the symbol is identical. These constraints enforce
correct bottom-up recognition of application areas, as better explained in the
next section.

Example 9. Consider p, p′ and M from the previous example. We report the
compatibilities between the sub-multipicture M[2 � 2 � (1, 1)] and two tiles:

M[2 � 2 � (1, 1)] ::
(

x x
x o

)
=

{(
(x, 1 � 1 � (1, 1)) (x, 1 � 1 � (1, 2))
(x, 1 � 1 � (2, 1)) (o, 1 � 1 � (2, 2))

)}
M[2 � 2 � (1, 1)] ::

(
A A
A A

)
=

{(
(A, 4 � 3 � (1, 1)) (A, 4 � 3 � (1, 1))
(A, 4 � 3 � (1, 1)) (A, 4 � 3 � (1, 1))

)}

3.2 An informal description of the algorithm

At a high level, our algorithm is a 2D version on the well-known CKY, as it
works bottom-up, and recognizes subpictures as the result of application of
grammar rules, starting from the simplest subpictures of the input, i.e. its pix-
els. The main step of the algorithm (Step 1) defines its core, and is divided in
three substeps: the first one, called also “match”, is used to match tiles on the
picture. The second substep, called also “grow”, is used to find maximal areas
compatible with a given rule. The last substep, called also “recognize”, checks
if there exist areas in which all the tiles of a rule are used. Those are therefore
valid application areas, and their recognition is duly recorded. The algorithm
succeeds only if it finds an application of a starting rule, having an application
area which spans the whole picture.

Let us now consider the details of the steps. The initialization phase sets the
tableau empty, then creates the multipicture from the input picture: if symbol x
appears in cell pi,j , then it puts pair (x, 1 � 1 � (i, j)) in Mi,j .

In step 1.1 (“Match”), we scan each 2 × 2 subpicture t of the multipicture.
That subpicture may appear among the tiles ω in the right-hand side of one or
more rules Re. Whenever this happens, we say that the subpicture is tileable by
rule Re. We locate the tableau elementary cell corresponding to the coordinates
of that subpicture, and there we add a candidate (Re, ωx, α); ωx contains all the
tiles in ω except for t; α is the ceiling of the scopes of all used symbols in t. At
the end of this step, we know whether each 2× 2 subpicture is tileable by some
rule.

In step 1.2 (“Grow”), we determine the same tileability information for all
larger subpictures. We do so by merging candidates already in T2,2, without
examining the multipicture again. For example, if two 2 × 2 subpictures at
(i, j) and (i, j + 1) are tileable with rule Re, then also the 2 × 3 subpicture at
(i, j), which includes both the above subpictures, is tileable with the same rule.
The set of missing tiles for the new subpicture is the intersection of the respec-
tive sets, while the scope of the new subpicture is the ceiling of the respective
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scopes. Operatively, this means that when we find the candidate (Re, ω1, α1, s1)
in elementary cell T [2 � 2 � (i, j)] and the candidate (Re, ω2, α2, s2) in adja-
cent elementary cell T [2 � 2 � (i, j + 1)], a new candidate could be added to
T [2�3�(i, j)]. We add this new candidate only if subpictures s1 and s2 overlap
correctly horizontally, i.e. all the columns in s1 except the first one are respec-
tively equal to the columns in s2 except the last one, i.e. s1 ‖ s2 is defined. The
new candidate is (Re, ω1 ∩ ω2, dα1 ∪ α2e, s1 ‖ s2). We proceed iteratively for all
larger subpictures.

In step 1.3 (“Recognize”), we scan the tableau for complete candidates, i.e.,
candidates with no missing tiles. When we find such an entry (Re, ∅, α, s) in
T [r � c � (i, j)], it means that subpicture of size (r, c) at position (i, j) is tileable
with rule Re = A → ω, and additionally, all the tiles ω are used at least once
in the subpictures. Therefore, we declare that subpicture p[r � c � (i, j)] be-
longs to LOC(ω), therefore there exists a derivation from an appropriate A-
homogeneous subpicture to the current subpicture. This means that cells of co-
ordinates r � c� (i, j) are generable by non-terminal symbol A, so add an entry
(A, r � c � (i, j)) to all those coordinates in the multipicture.

At the end of step 1.3, we may or not have added new entries to the multi-
picture. If we did, the multipicture contains new entries, that may render new
subpictures tileable in other ways, so we repeat steps 1.1, 1.2 and 1.3 again. If
we did not, then no more subpictures can be recognized, because we reached a
fixed point.

The final step determines if each cell of the multipicture contains an (S, m�
n � (1, 1)) entry or not2. In this case, we recognized the whole picture as a
derivation of the starting symbol and we declare that picture p belongs to L(G);
otherwise p 6∈ L(G).

3.3 The algorithm

For the sake of simplicity, we assume that all rules in R are variable-size rules,
the extension of the algorithm to fixed-size rules is trivial. We also assume that
rules are numbered as R1, R2, ..., their right-hand sides as ω1, ω2, ..., and the
tiles appearing in ωi as ti,1, ti,2, ....

Given a TRG grammar G = (Σ, N, S, R) and a picture p ∈ Σ(m,n), the fol-
lowing algorithm determines whether p ∈ L(G) or not. The algorithm con-
structs and updates a tableau T of size (m,n) and a multipicture M of size
(m,n) over alphabet Σ ∪N . The input grammar may be ambiguous.

• Step 0, “Initialize”:
Set the tableau empty: ∀r, c, i, j : T [r � c � (i, j)] = ∅.
Initialize the multipicture M as follows: Mi,j = {(pi,j , 1 � 1 � (i, j))}.

• Step 1: repeat the following steps until fixed point is reached;
2 By construction of step 1.3, if a cell contains an entry (A, r�c�(i, j)), then all the cells

in r�c�(i, j) also contain that entry. Therefore, if any cell contains (S, m�n�(1, 1)),
than all the cells contain it.
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• Step 1.1, “Match”:
if ∃Re, t,M such that

Re = (A → ω) ∈ R, t ∈ ω, M ∈ (M[2 � 2 � (i, j)] :: t),

where M =
(

(t1,1, α1,1) (t1,2, α1,2)
(t2,1, α2,1) (t2,2, α2,2)

)
,

then add (Re, ω − t, dα1,1 ∪ α1,2 ∪ α2,1 ∪ α2,2e, t) to T [2 � 2 � (i, j)].

• Step 1.2, “Grow”:
∀r, c, 2 < r ≤ m, 2 < c ≤ n in lexicographical order:

– if (Re, ω1, α1, s1) ∈ T [r � (c−1) � (i, j)],
and (Re, ω2, α2, s2) ∈ T [r � (c−1) � (i, j+1)],
and s1 ‖ s2 is defined,
then add (Re, ω1 ∩ ω2, dα1 ∪ α2e, s1 ‖ s2) to T [r � c � (i, j)];

– if (Re, ω1, α1, s1) ∈ T [(r−1) � c � (i, j)],
and (Re, ω2, α2, s2) ∈ T [(r−1) � c � (i+1, j)],

and
s1====s2

is defined,

then add (Re, ω1 ∩ ω2, dα1 ∪ α2e,
s1====s2

) to T [r � c � (i, j)].

• Step 1.3, “Recognize”:
if (Re, ∅, α, s) ∈ T [r � c� (i, j)] and α ⊆ r � c� (i, j) and Re = (A → ...)
then ∀(i′, j′) ∈ r � c � (i, j) add (A, r � c � (i, j)) to Mi′,j′ .

• Step 2, “Declare”:
if ∀(i, j) ∈ r � c (S, m � n � (1, 1)) ∈Mi,j

then declare p ∈ L(G)
else declare p 6∈ L(G).

4 Conclusions

We presented a general bottom-up algorithm to parse languages generated by
TRGs. This opens interesting possibilities of application of the presented de-
scription techniques, e.g. pattern recognition and image compression, still to be
investigated. From [5, 6] we know that the class of TRG languages strictly con-
tains REC. This, together with the constructive proofs there presented, make
it straightforward to adapt and simplify the algorithm also for parsing REC
languages.

It is worth mentioning that we implemented a fully functioning parser pro-
totype. The prototype is written in Tcl [11], and we used it to generate the full
example reported in the appendix.
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Appendix: A full example

In this section we illustrate how our parsing technique operates, by showing
a complete example. More precisely, we illustrate how it recognizes picture p
according to grammar G, where p and G are the same as in Example 6 at page
6. For ease of reference, we now assign a name to each tile in a right-hand side,
as follows:

R1 : S →
s

A A B B
A A B B

{
=


t1,1 =

„
A A
A A

«
, t1,2 =

„
A B
A B

«
, t1,3 =

„
B B
B B

«ff

R2 : A →

u

ww
v

x x x
x o o
x o o
x x x

}

��
~ =


t2,1 =

„
x x
x o

«
, t2,2 =

„
x x
o o

«
, t2,3 =

„
x o
x o

«
,

t2,4 =

„
x o
x x

«
, t2,5 =

„
o o
x x

«
, t2,6 =

„
o o
o o

«ff

R3 : B →

u

ww
v

x x x
o o x
o o x
x x x

}

��
~ =


t3,1 =

„
x x
o x

«
, t3,2 =

„
x x
o o

«
, t3,3 =

„
o x
o x

«
,

t3,4 =

„
o x
x x

«
, t3,5 =

„
o o
x x

«
, t3,6 =

„
o o
o o

«ff
As in Section 3.3, we denote the tableau and multipicture used by the algorithm
with T andM respectively. Note that in step 1.1 the algorithm examinesM and
adds candidates to elementary cells in T2,2; in step 1.2 it examines candidates
from cell T2,2 and adds candidates to other tableau cells; in step 1.3 it examines
the entire T and adds elements to M.

First, we show the initialization (step 0), then two iterations of step 1, and
finally step 2. We omit a third iteration of step 1, which has no effects on T and
M , because the fixed point is reached.

Step 0: initialize

At initialization time, T is set to empty. The multipicture M is initially set to
the contents of the picture, with the scope of each terminal symbol set to the its
coordinate in p.

M =

(x, 1�1�(1, 1)) (x, 1�1�(1, 2)) (x, 1�1�(1, 3)) (x, 1�1�(1, 4)) (x, 1�1�(1, 5)) (x, 1�1�(1, 6))
(x, 1�1�(2, 1)) (o, 1�1�(2, 2)) (o, 1�1�(2, 3)) (o, 1�1�(2, 4)) (o, 1�1�(2, 5)) (x, 1�1�(2, 6))
(x, 1�1�(3, 1)) (o, 1�1�(3, 2)) (o, 1�1�(3, 3)) (o, 1�1�(3, 4)) (o, 1�1�(3, 5)) (x, 1�1�(3, 6))
(x, 1�1�(4, 1)) (o, 1�1�(4, 2)) (o, 1�1�(4, 3)) (o, 1�1�(4, 4)) (o, 1�1�(4, 5)) (x, 1�1�(4, 6))
(x, 1�1�(5, 1)) (x, 1�1�(5, 2)) (x, 1�1�(5, 3)) (x, 1�1�(5, 4)) (x, 1�1�(5, 5)) (x, 1�1�(5, 6))

Step 1.1 “match” (first iteration)

Tableau cells corresponding to rectangles of size (1, c) and (r, 1) are not used by
the algorithm, and remain empty. We add elements to elementary cells T [2 �
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2 � (i, j)] in the tableau: for each tile t of size (2, 2) in the right-hand size of a
rule Re, which is compatible with a (2, 2) sub-multipicture, we add a (Re, ωe −
t, 2 � 2 � (i, j)) entry. For elementary cell T [2 � 2 � (1, 1)]:

M =

(x,1�1�(1,1)) (x,1�1�(1,2)) ...

(x,1�1�(2,1)) (o,1�1�(2,2)) ...

... ... ...

�

T2,2 =
(R2, {t2,2, t2,3, t2,4, t2,5, t2,6},2 � 2 � (1,1)) ...

... ...

The sub-multipicture tile corresponding to elementary cell T [2 � 2 � (1, 2)]
appears in the right-hand side of two rules (R2 and R3), therefore we add two
candidates to T [2 � 2 � (1, 2)]:

M =

(x, 1�1�(1, 1)) (x,1�1�(1,2)) (x,1�1�(1,3)) ...

(x, 1�1�(2, 1)) (o,1�1�(2,2)) (o,1�1�(2,3)) ...

... ... ...

�

T2,2 =
(R2, {t2,2, t2,3, t2,4, t2,5, t2,6}, 2 � 2 � (1, 1)) (R2, {t2,1, t2,3, t2,4, t2,5, t2,6},2 � 2 � (1,2)) ...

(R3, {t3,1, t3,3, t3,4, t3,5, t3,6},2 � 2 � (1,2)) ...

... ...

Step 1.2 “grow” (first iteration)

For all the tableau cells from T2,3 to T2,6, we fill each elementary cell by “merg-
ing” the contents of a pair of elementary cells belonging to the tableau cell im-
mediately on the left:

If
(Re, ω1, α1) ∈ T [r � (c− 1) � (i, j)] ∧
(Re, ω2, α2) ∈ T [r � (c− 1) � (i, j + 1)]

ff
then (Re, ω1∩ω2, dα1∪α2e) ∈ T [r�c�(i, j)].

T2,2 =
(R2, {t2,2, t2,3, t2,4, t2,5, t2,6},2 � 2 � (1,1)) (R2, {t2,1, t2,3, t2,4, t2,5, t2,6},2 � 2 � (1,2)) ...

(R3, {t3,1, t3,3, t3,4, t3,5, t3,6}, 2 � 2 � (1, 2)) ...

... ...

�

T2,3 =
(R2, {t2,3, t2,4, t2,5, t2,6},2 � 3 � (1,1)) ...

... ...

Then, we fill elementary cells in T3,2 starting from elementary cells in T2,2:

If
(Re, ω1, α1) ∈ T [(r − 1) � c � (i, j)] ∧
(Re, ω2, α2) ∈ T [(r − 1) � c � (i + 1, j)]

ff
then (Re, ω1∩ω2, dα1∪α2e) ∈ T [r�c�(i, j)].
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T2,2 =

(R2, {t2,2, t2,3, t2,4, t2,5, t2,6},2 � 2 � (1,1)) (R2, {t2,1, t2,3, t2,4, t2,5, t2,6}, 2 � 2 � (1, 2)) ...
(R3, {t3,1, t3,3, t3,4, t3,5, t3,6}, 2 � 2 � (1, 2)) ...

(R2, {t2,1, t2,2, t2,4, t2,5, t2,6},2 � 2 � (2,1)) ...

... ...

�

T3,2 =
(R2, {t2,2, t2,4, t2,5, t2,6},3 � 2 � (1,1)) ...

... ...

Finally, we determine the contents of the remaining cells in the tableau by
applying the same horizontal and vertical merging rules as above.

Step 1.3 “recognize” (first iteration)

Let us consider the final state of tableau cell T5,3: it contains complete candi-
dates for rules R2 and R3.

(R2, ∅, 5 � 3 � (1, 1)) (R2, {t2,1, t2,3, t2,4}5 � 3 � (1, 2)) (R2, {t2,1, t2,3, t2,4}, 5 � 3 � (1, 3)) (R3, ∅, 5 � 3 � (1, 4))
(R3, {t3,1, t3,3, t3,4}, 5 � 3 � (1, 2)) (R3, {t3,1, t3,3, t3,4}, 5 � 3 � (1, 3))

Therefore we add a pair (A, 5�3� (1, 1)) to all cells of coordinates 5�3� (1, 1)
in M, and a pair (B, 5 � 3 � (1, 4)) to all cells of coordinates 5 � 3 � (1, 4) in M.
The final state of the multipicture at the end of iteration 1 is given below.

M =

(x, 1 � 1 � (1, 1)) (x, 1 � 1 � (1, 2)) (x, 1 � 1 � (1, 3)) (x, 1 � 1 � (1, 4)) (x, 1 � 1 � (1, 5)) (x, 1 � 1 � (1, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))

(B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2))

(x, 1 � 1 � (2, 1)) (o, 1 � 1 � (2, 2)) (o, 1 � 1 � (2, 3)) (o, 1 � 1 � (2, 5)) (o, 1 � 1 � (2, 5)) (x, 1 � 1 � (2, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))

(B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2))

(x, 1 � 1 � (3, 1)) (o, 1 � 1 � (3, 2)) (o, 1 � 1 � (3, 3)) (o, 1 � 1 � (3, 4)) (o, 1 � 1 � (3, 5)) (x, 1 � 1 � (3, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))

(B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2))

(x, 1 � 1 � (4, 1)) (o, 1 � 1 � (4, 2)) (o, 1 � 1 � (4, 3)) (o, 1 � 1 � (4, 4)) (o, 1 � 1 � (4, 5)) (x, 1 � 1 � (4, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))

(B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2))

(x, 1 � 1 � (5, 1)) (x, 1�1�(5, 2)) (x, 1�1�(5, 3)) (x, 1�1�(5, 4)) (x, 1�1�(5, 5)) (x, 1�1�(5, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))

(B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2))

Step 1.1 “match” (second iteration)

We apply now Step 1.1 to the new multipicture. We match rule R1 over entire
A- and B-subpictures.
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M =

.... ... ... ...
... ...

(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1))
... (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) ...

(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1))
... ...
... ...

(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1))
... (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) ...

(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1))
... ...

... ... ... ...

⇒ T2,2 =

.... ... ...
...

(R1, {t1,2, t1,3}, 5 � 3 � (1, 1))
... (R1, {t1,2, t1,3}, 5 � 4 � (1, 1)) ...

(R1, {t1,2, t1,3}, 5 � 5 � (1, 1))
... ...

... ... ...

Step 1.2 “grow” (second iteration)

At the end of Step 1.2, cell T5,6 contains the following complete candidate:

T2,2 = (R1, ∅, 5 � 6 � (1, 1)) .

Thus, an application area for rule R1 was recognized over the entire multipic-
ture.

Step 1.3 “recognize” (second iteration)

We add a pair (S, 5 � 6 � (1, 1)) to every cell in M in rectangle 5 � 6 � (1, 1)
(representing the whole picture). The final state of M is:

M =

(x, 1 � 1 � (1, 1)) (x, 1 � 1 � (1, 2)) (x, 1 � 1 � (1, 3)) (x, 1 � 1 � (1, 4)) (x, 1 � 1 � (1, 5)) (x, 1 � 1 � (1, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))

(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))
(S, 5 � 6 � (1, 1)) (S, 5 � 6 � (1, 1))

(x, 1 � 1 � (2, 1)) (o, 1 � 1 � (2, 2)) (o, 1 � 1 � (2, 3)) (o, 1 � 1 � (2, 5)) (o, 1 � 1 � (2, 5)) (x, 1 � 1 � (2, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))

(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))
(S, 5 � 6 � (1, 1)) (S, 5 � 6 � (1, 1))

(x, 1 � 1 � (3, 1)) (o, 1 � 1 � (3, 2)) (o, 1 � 1 � (3, 3)) (o, 1 � 1 � (3, 4)) (o, 1 � 1 � (3, 5)) (x, 1 � 1 � (3, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))

(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))
(S, 5 � 6 � (1, 1)) (S, 5 � 6 � (1, 1))

(x, 1 � 1 � (4, 1)) (o, 1 � 1 � (4, 2)) (o, 1 � 1 � (4, 3)) (o, 1 � 1 � (4, 4)) (o, 1 � 1 � (4, 5)) (x, 1 � 1 � (4, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))

(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))
(S, 5 � 6 � (1, 1)) (S, 5 � 6 � (1, 1))

(x, 1 � 1 � (5, 1)) (x, 1 � 1 � (5, 2)) (x, 1 � 1 � (5, 3)) (x, 1 � 1 � (5, 4)) (x, 1 � 1 � (5, 5)) (x, 1 � 1 � (5, 6))
(A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 3 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4))
(A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 4 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3))
(A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (A, 5 � 5 � (1, 1)) (B, 5 � 3 � (1, 4)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2))
(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 2)) (B, 5 � 4 � (1, 3)) (B, 5 � 4 � (1, 3)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))

(S, 5 � 6 � (1, 1)) (B, 5 � 5 � (1, 1)) (B, 5 � 5 � (1, 2)) (S, 5 � 6 � (1, 1))
(S, 5 � 6 � (1, 1)) (S, 5 � 6 � (1, 1))

Step 2 “declare”

Each cell in the multipicture contains an entry (S, 5 � 6 � (1, 1)). The picture is
therefore successfully recognized.


