
Tile-rewriting grammars
for picture languages
and associated parsing techniques

PhD Minor research
Student : Daniele Paolo Scarpazza
Affiliation : Politecnico di Milano
Advisor : Prof. Stefano Crespi Reghizzi
Date : February 16th, 2005

In this presentation:

1) What are pictures languages

2) What are Tile-Rewriting Grammars

3) We have a polynomial parsing
technique for Tile-Rewriting
Grammars!

In this presentation:

1) What are pictures languages

2) What are Tile-Rewriting Grammars

3) We have a polynomial parsing
technique for Tile-Rewriting
Grammars!

Picture

Given a finite alphabet Σ, a picture over Σ is
a rectangular array of elements of Σ.

Example: Σ = {•, ·}

••••••••••••• •••••••••••••• · · · · · · · · · · · • • · · · · · · · · · · · •• · · · · · · · · · · · • • · ••••••••• · •• · · · · · · · · · · · • • · • · · · · · · · • · •• · · · · · · · · · · · • • · • · ••••• · • · •• · · · · · · · · · · · • • · • · • · · · • · • · •• · · · · · · · · · · · • • · • · • · • · • · • · •• · · · · · · · · · · · • • · • · ••• · • · • · •• · · · · · · · · · · · • • · • · · · · · • · • · •• · · · · · · · · · · · • • · ••••••• · • · •• · · · · · · · · · · · • • · · · · · · · · · • · •••••••••••••• ••••••••••• · •

We call Σ∗∗ the set of pictures is over Σ.

For h, k ≥ 1, Σ(h,k) denotes the set of pictures of size (h, k).

We will use the notation |p| = (h, k), |p|row = h, |p|col = k.

A pixel is an element p(i, j).

If all pixels are identical to C ∈ Σ the picture is called homogeneous
and denoted as C-picture.

Subpicture

Let p and q be pictures. q can be a subpicture of p at position (i, j), and we
write:

q E(i,j) p.

Example: if p =

 a d g j m
b e h k n
c f i l o

 and q =

(
e h k
f i l

)
, then: q E(2,2) p.

Substitution

If p, q, q′ are pictures, q E(i,j) p, and q, q′ have the same size, then

p[q′/q](i,j)

is the picture obtained by replacing in p the occurrence of q at (i, j) with q′.

If p =

 a d g j m
b e h k n
c f i l o

 , q =

(
e h k
f i l

)
, q′ =

(
Z Z Z
Z Z Z

)
,

then:

p[q′/q](2,2) =

 a d g j m
b Z Z Z n
c Z Z Z o

 .

Coordinates

A coordinate is a couple of positive integers.

If q E(i,j) p, we call coor(i,j)(q, p)
the set of coordinates in p where q is located.

p =

 a d g j m
b e h k n
c f i l o

 , q =

(
e h k
f i l

)
,

coor(2,2)(q, p) = {(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)}.

Rectangle

Intuitively, we call rectangle a set of coordinates of a rectangular area.

We write rectangles in the following form r � c � (i, j).
That rectangle is r rows high, c columns wide and starts at position (i, j).

p =

 a d g j m
b e h k n
c f i l o

 , q =

(
e h k
f i l

)
,

coor(2,2)(q, p) = {(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)} = 2�3�(2,2)

Ceiling

Given a set of coordinates C, the ceiling of C, denoted as dCe, is the smallest
rectangle which is either a superset or equal to C.

d(1 � 1 � (3,4)) ∪ (2 � 3 � (5,7)))e =

= d{(3,4), (5,7), (5,8), (5,9), (6,7), (6,8), (6,9)}e =

= 4 � 6 � (3,4)

Locally testable language (LOC).

Given a finite set of tiles ω = {t1, t2, ...} ⊆ Σ(i,j),
LOC(ω) is the set of those pictures which use all the tiles in ω at least once.

ω =

{
A A
A A

,
A B
A B

,
B B
B B

}
,

A A B B B
A A B B B

∈ LOC(ω)

A A A B B
A A B B B

6∈ LOC(ω),
A A A B
A A A B

6∈ LOC(ω)

In this presentation:

1) What are pictures languages

2) What are Tile-Rewriting Grammars

3) We have a polynomial parsing
technique for Tile-Rewriting
Grammars!

Tile Rewriting Grammar (TRG)

It is a tuple (Σ, N, S, R), where Σ is the terminal alphabet, N is a set of nonter-
minal symbols, S ∈ N is the starting symbol, R is a set of rules. R may contain
two kinds of rules:

Fixed size: A → t

Variable size: A → ω

A fixed size rule rewrites a A-homogeneous subpicture as t. A variable size rule
rewrites a A-homogeneous subpicture as one of the pictures in LOC(ω).

Fixed size rules are not a special case of variable size rules.

Equivalence relation, Maximal subpicture

Let γ be an equivalence relation on coor(p), written (x, y)
γ∼ (x′, y′).

Two subpictures q and q′ are equivalent with respect to γ

iff their coordinates are equivalent: (x, y)
γ∼ (x′, y′).

A homogeneous C-subpicture q E p is maximal with respect to γ

iff every equivalent C-subpicture q′

is completely included in q or does not overlap with q.

A A A
A A A
A A A

p p'
x x x
x o x
x x x

γ γ'

S S S S S
S S S S S
S S S S S
S S S S S

S S S S S
S S S S S
S S S S S
S S S S S

o o o o o

o o o o o

o
o
o

o
o
o

o o o o o

o o o o o

o
o
o

o
o
o

tr

⇒

Derivation in one step (p, γ) ⇒G (p′, γ′):
– there is a rule A → t or A → ω in grammar G;
– there is an A-homogeneous subpicture r E p, maximal with respect to γ
– p′ is obtained substituting r with picture t, i.e. p′ = p[t/r]
– in case of variable size rule t ∈ LOC(ω)
– γ′ is equal γ except for the eq. class containing z = coor(i,j)(r, p),
split into z and its complement w.r.t. its equivalence class.

The subpicture r is named the application area in the derivation step.

Derivation in n steps is a trivial extension.

The picture language defined by a grammar G (written L(G)) is the set of p ∈
Σ∗∗ such that, if |p| = (h, k), then(

S(h,k), coor(p)× coor(p)
) ∗⇒G (p, γ) (1)

where γ is arbitrary.

For short we write S
∗⇒G p.

Example: Chinese boxes.

G = (Σ, N, S, R), where Σ = {p, q, x, y, ◦}, N = {S},
and R consists of the following rules:

S → p q
x y ;

S →
{

p ◦
◦ S

,
◦ S
x ◦ ,

◦ S
◦ S

,
S S
◦ ◦ ,

◦ ◦
S S

,
S S
S S

,
◦ q
S ◦ ,

S ◦
S ◦ ,

S ◦
◦ y

}

Example picture in L(G) :

p ◦ ◦ ◦ ◦ q
◦ p ◦ ◦ q ◦
◦ ◦ p q ◦ ◦
◦ ◦ x y ◦ ◦
◦ x ◦ ◦ y ◦
x ◦ ◦ ◦ ◦ y

For convenience, we will often specify a set of tiles by a sample picture exhibiting
the tiles as its subpictures.

We write | to separate alternative right parts of rules.

The previous grammar becomes:

S → p q
x y

| B2,2


p ◦ ◦ q
◦ S S ◦
◦ S S ◦
x ◦ ◦ y



Example: 2D Dyck analogue.

S → p q
x y

|

u

ww
v

p ◦ ◦ q
◦ S S ◦
◦ S S ◦
x ◦ ◦ y

}

��
~ |

s
S S X X
S S X X

{
|

u

ww
v

S S
S S
X X
X X

}

��
~

X →
s

S S
S S

{

where JpK is a shorthand for the set of 2× 2 tiles of p.

In this presentation:

1) What are pictures languages

2) What are Tile-Rewriting Grammars

3) We have a polynomial parsing
technique for Tile-Rewriting
Grammars!

Tableau

• A tableau is a matrix of variable-size matrices.
A m× n tableau T contains m× n matrices, each denoted by Ti,j.

• Matrix Ti,j has size (m− i + 1, n− j + 1).
The notation T [i � j � (a, b)] indicates the (a, b) element of matrix Ti,j, or (Ti,j)a,b.

• Example: the following figure shows a 3× 6 tableau.

• each elementary cell in a tableau corresponds to a subpicture.

Candidates

• our algorithm uses one tableau T , to store candidates;

• candidate is a triple (Re, ωx, α) such that
Re is a rule, ωx is a set of missing tiles, α ⊆ R(m � n) is a rectangle;

• Example: element (R3, {t3,2, t3,3, t3,5}, ...) in a tableau cell indicates that
the subpicture corresponding to that tableau cell only uses tiles present in
the right-part of rule R3, and tiles t3,2, t3,3, are t3,5 not used in the picture.

Monopicture, multipicture

• Each cell of a monopicture M of size (m,n) over alphabet Σ
contains exactly one couple (symbol, rectangle) such as (A, u),
where A ∈ Σ, and u is a rectangle contained in m � n.

• We call u the scope of symbol A.

• In multipictures, each cell contains zero or more such couples.

• our algorithm uses one multipicture M , to store recognized application
areas;

The parsing technique at a glance

Picture p

Multipicture M

Step 0

Step 1.1

Step 1.2

Step 1.3

Tableau
(cells T

2,2
)Tableau

(other cells)

Step 2

Step 0: initialize T and M ;
Step 1: repeat until fixed point:
– in step 1.1 match we examine M

and add candidates to T2,2;
– in step 1.2 grow we examine T2,2

and add candidates to T∗,∗;
– in step 1.3 recognize we examine T∗,∗

and add couples to M .
Step 2: declare;

T : which subpictures are tileable
by which rule;
A: which activation areas have been
recognized so far;

Our algorithm – step # 1.1

Step 1.1: update each cell T [2 � 2 � (i, j)], adding elements: if

Re = (Q → ω) ∈ R, t ∈ ω, t′ ∈ (t :: M [2 � 2 � (i, j)]),

t′ =
(

(t1,1, α1,1) (t1,2, α1,2)
(t2,1, α2,1) (t2,2, α2,2)

)
then:

(Re, ω − t, dα1,1 ∪ α1,2 ∪ α2,1 ∪ α2,2e) ∈ T [2 � 2 � (i, j)] ;

Our algorithm – step # 1.2

Step 1.2: update T adding elements:
∀(r, c) | 2 < r ≤ m, 2 < c ≤ n in lexicographical order: if

(Re, ω1, α1) ∈ T [r � c− 1 � (i, j)] ∧ (Re, ω2, α2) ∈ T [r � c− 1 � (i, j + 1)] or

(Re, ω1, α1) ∈ T [r − 1 � c � (i, j)] ∧ (Re, ω2, α2) ∈ T [r − 1 � c � (i + 1, j)]

then
(Re, ω1 ∩ ω2, dα1 ∪ α2e) ∈ T [r � c � (i, j)] ;

Comment: elements of two horizontally adjacent tableau cells m � n can be merged into a
corresponding m � (n+1) cell. Similarly for vertically adjacent cells. Given the same rule,
the set of missing tiles is the intersection of the sets of missing tiles, and the scope is the
ceiling of the union of scopes.

Our algorithm – step # 1.3

Step 1.3: update M adding elements: for each element such that

(Re, ∅, α) ∈ T [r � c � (i, j)] | α ⊆ r � c � (i, j), Re = (A → ...)

add elements:

∀(i, j) ∈ r � c � (i, j) (A, r � c � (i, j)) ∈ Mi,j ;

Comment: whenever all the tiles of subpicture r�c�(i, j) appear in the right part of rule
Re, and no tile is missing (Re, ∅, ...) and the scope α of all the recognized symbols is inside
the current subpicture, then recognize the subpicture as application area of rule Re. Update
multipicture, adding a couple (A, r�c�(i, j)) in every cell of sub-multipicture r�c�(i, j).

Our algorithm – final step

Step 2: to be executed when fixed point is reached:
if ∀(i, j) ∈ r � c (S, m � n � (1, 1)) ∈ Mi,j then:

declare p ∈ L(G)

else
declare p 6∈ L(G).

Comment: the recognition of a rule which has the starting symbol S as the left-hand
side, and the whole picture as application area (m � n � (1, 1)), indicates that the picture is
recognized. In short, the multipicture must contain element (S, m× n) in every cell. If such
area is not recognized and a fixed point is reached, the picture is not in the language.

Compatibility

Given a picture p and a multipicture M ,
the compatibility between p and M (denoted as p :: M) is
the set of monopictures p′ such that:

for each cell: p′i,j = (pi,j, αi,j) ∈ Mi,j

for each pair: (αi,j = αk,l ∧ pi,j = pk,l) ∨ (αi,j ∩ αk,l = ∅).

We say that p is compatible with M iff p :: M 6= ∅.

Example: pictures (p, p′) and corresponding multipictures (M, M ′) in the first step of a recognition chain. Please consider the
sub-multipicture M ′[2 � 2 � (1, 1)], bordered in the figure. For it, compatibilities with two tiles are reported:

M
′
[2 � 2 � (1, 1)] ::

A A
A A

=

{
(A, 4�3�(1, 1)) (A, 4�3�(1, 1))
(A, 4�3�(1, 1)) (A, 4�3�(1, 1))

}

M
′
[2 � 2 � (1, 1)] ::

x x
x o

=

{
(x, 1�1�(1, 1)) (x, 1�1�(1, 2))
(x, 1�1�(2, 1)) (o, 1�1�(2, 2))

}

Compatibility 2

• In a derivation, each application areas is disjoint or included in a previous one:

α1, ..., αi, αi+1, ..., αi+j, ... (αi ∩ αi+j = ∅) ∨ (αi ⊇ αi+j) .

• In bottom-up recognition, enforcing the reversed version: the all-or-nothing principle.
• Example of violation:

• We enforce the principle with multipictures, i.e. pictures containing couples (symbol,
area). Example, each B would be replaced by (B, 4 � 4 � (1, 4)).
The last step would be illegal because:

(4 � 6 � (1, 1)) 6⊇ (4 � 4 � (1, 4)), (4 � 6 � (1, 1)) ∩ (4 � 4 � (1, 4) 6= ∅).

Informal comments

• The algorithm scans the tableau and the multipicture several times;
at each scan, one or more disjoint application areas are recognized;

• each tableau cell T [r � c � (i, j)] is filled with candidates (Re, ω, α)

where if rule Re = A → ωe exists, then

ω = ωe − B2,2(M [r � c � (i, j)]).

• When (Re, ∅, α) ∈ T [r � c � (i, j)], then
exactly all the tiles in rule Re are used in subpicture M [r � c � (i, j)];

• moreover α is the ceiling of the activation areas of the symbols in the multipicture which
comply with rule Re.

• If α is not smaller or equal to the subrectangle r � c � (i, j) we discard the rule,
since it would violate the theorem of disjointness of application areas.

• Every time a rule Re = (A → ...) is recognized over an activation area q, a couple
(A, q) is added to every cell of M [q], so that the next iteration of the algorithm can use
the newly added symbol to recognize larger activation areas.

Copy rules are not needed

If G = (Σ, N, S, R) is a TRG, and A,B ∈ N , a rule in the form

A →
{

B B
B B

}
is said to be a copy rule;

For every TRG G with copy rules,
∃G′ | L(G) = L(G′) and G′ is free from copy rules;

With no loss of generality, our algorithm operates
on TRG grammars free from copy rules.

Time complexity

• input picture has dimensions m× n, the input size is N = m · n;
• complexity is dominated by step 1.2;

– this step fills a m× n tableau which has m(m−1)n(n−1)
4 ≤ N2 cells;

– for each cell, it compares couples of elements of exactly two other cells;
– elements are in the form (Re, ω, α) ⇒ they can be at most
|R| ·maxi|ωRi

| · |R(m× n)|,
where k = |R| ·maxi|ωRi

| is fixed, while |R(m× n)| ≤ N2;
– therefore, the time complexity of each comparison is ≤ k2N4,

and the overall complexity of step 1.2 is ≤ k2N6.
• Steps 1.1–1.3 (therefore 1.2) are iterated until fixed point.

At every iteration, one or more application areas detected.
No copy rules ⇒ an application area can appear at most once in a derivation.

• Therefore # of iterations ≤ # application areas ≤ N2.
• Therefore, the time complexity of the whole algorithm is O(N8).

A full example

In the next slides we fully develop an example, with the help of the above storyboard. Elements updated
in each slide will be marked in black. Elements will be illustrated in this order:

• the input picture and the input grammar;

• the result of initialization on the tableau T and on the multipicture M will be shown;

• the effects of the first iteration;

• the effects of the second iteration (and conclusion).

For sake of clarity, T and M at initialization, iteration 1 and 2 are represented as separate entities.

A full example: the input picture

p =

x x x x x x

x o o o o x

x o o o o x

x o o o o x

x x x x x x

A full example: the input grammar (1/2)

G = (Σ, N, S, R)

Σ = {x, o}
N = {S, A,B}

R1 : S → B2,2

(
A A B B
A A B B

)

R2 : A → B2,2


x x x
x o o
x o o
x x x



R3 : B → B2,2


x x x
o o x
o o x
x x x



A full example: the input grammar (2/2)

For ease of reference, we give names to the tiles in each right-hand side.

R1 : S → B2,2

(
A A B B
A A B B

)
=

{
t1,1=

(
A A
A A

)
, t1,2=

(
A B
A B

)
, t1,3=

(
B B
B B

)}

R2 : A → B2,2


x x x
x o o
x o o
x x x

 =

{
t2,1=

(
x x
x o

)
, t2,2=

(
x x
o o

)
, t2,3=

(
x o
x o

)
,

t2,4=

(
x o
x x

)
, t2,5=

(
o o
x x

)
, t2,6=

(
o o
o o

)}

R3 : B → B2,2


x x x
o o x
o o x
x x x

=

{
t3,1=

(
x x
o x

)
, t3,2=

(
x x
o o

)
, t3,3=

(
o x
o x

)
,

t3,4=

(
o x
x x

)
, t3,5=

(
o o
x x

)
, t3,6=

(
o o
o o

)}

A full example: tableau initialization

• At initialization time, the tableau is empty.

• Being the input picture dimensions equal to 6×5, also the tableau T will have 6×5 cells.

• The first cell, T1,1, will be a 6× 5 matrix.
Cells in this matrix represent each 1× 1 tile in the input picture.

• T1,2, will be a 6 × 4 matrix, i.e. with one less column, and so on, up to T1,6, which is a
6× 1 matrix. Same considerations apply to the second and following rows.

• The last cell, T5,6, is a matrix composed by a single cell, representing the whole input
picture.

A full example: multipicture initialization

The multipicture is initially set to the contents of the picture. The scope of
each terminal symbol is set to the 1× 1 cell where the symbol belong.

M =

(x, 1�1�(1, 1)) (x, 1�1�(1, 2)) (x, 1�1�(1, 3)) (x, 1�1�(1, 4)) (x, 1�1�(1, 5)) (x, 1�1�(1, 6))

(x, 1�1�(2, 1)) (o, 1�1�(2, 2)) (o, 1�1�(2, 3)) (o, 1�1�(2, 4)) (o, 1�1�(2, 5)) (x, 1�1�(2, 6))

(x, 1�1�(3, 1)) (o, 1�1�(3, 2)) (o, 1�1�(3, 3)) (o, 1�1�(3, 4)) (o, 1�1�(3, 5)) (x, 1�1�(3, 6))

(x, 1�1�(4, 1)) (o, 1�1�(4, 2)) (o, 1�1�(4, 3)) (o, 1�1�(4, 4)) (o, 1�1�(4, 5)) (x, 1�1�(4, 6))

(x, 1�1�(5, 1)) (x, 1�1�(5, 2)) (x, 1�1�(5, 3)) (x, 1�1�(5, 4)) (x, 1�1�(5, 5)) (x, 1�1�(5, 6))

A full example: iteration #1

All tableau cells corresponding to 1× n and n× 1 cells are never used by
the algorithm, and always remain empty.

A full example: iteration #1, step 1.1

Add elements to cells T [2 � 2 � (i, j)] in the tableau: informally, for each of the 2× 2 tiles t in the multipicture
which appear in the right-hand size of a rule, add a (Ri, ωi − t, 2 � 2 � (i, j)) entry.

For the first cell, T [2 � 2 � (1, 1)]:

M =

(x, 1�1�(1, 1)) (x, 1�1�(1, 2)) ...

(x, 1�1�(2, 1)) (o, 1�1�(2, 2)) ...

...

⇓

T2,2 =
(R2, {t2,2, t2,3, t2,4, t2,5, t2,6}, 2�2�(1, 1)) ...

... ...

A full example: iteration #1, step 1.1 (continued)

Same for the second cell, T [2 � 2 � (i, j)]. Note that the corresponding tile appears in the right-hand side
of two rules, these two elements are added to the tableau:

M =

(x, 1�1�(1, 1)) (x, 1�1�(1, 2)) (x, 1�1�(1, 3)) ...

(x, 1�1�(2, 1)) (o, 1�1�(2, 2)) (o, 1�1�(2, 3)) ...

...

⇓

T2,2 =
(R2, {t2,2, t2,3, t2,4, t2,5, t2,6}, 2�2�(1, 1)) (R2, {t2,1, t2,3, t2,4, t2,5, t2,6}, 2�2�(1, 2)) ...

(R3, {t3,1, t3,3, t3,4, t3,5, t3,6}, 2�2�(1, 2)) ...

... ...

A full example: iteration #1, step 1.2

For all the matrices in the tableau from T2,3 to T2,6, each cell can be filled by “merging” the contents of a couple
of cells in the tableau matrix immediately on the left:

(Re, ω1, α1) ∈ T [r � c− 1 � (i, j)] ∧
(Re, ω2, α2) ∈ T [r � c− 1 � (i, j + 1)]

}
⇒ (Re, ω1 ∩ ω2, dα1 ∪ α2e) ∈ T [r � c � (i, j)]

T2,2 =
(R2, {t2,2, t2,3, t2,4, t2,5, t2,6}, 2�2�(1, 1)) (R2, {t2,1, t2,3, t2,4, t2,5, t2,6}, 2�2�(1, 2)) ...

(R3, {t3,1, t3,3, t3,4, t3,5, t3,6}, 2�2�(1, 2)) ...

... ...

⇓

T2,3 =
(R2, {t2,3, t2,4, t2,5, t2,6}, 2�3�(1, 1)) ...

... ...

A full example: iteration #1, step 1.2 (continued)

Also cells in matrix T3,2 can be derived from cells in T2,2:
(Re, ω1, α1) ∈ T [r − 1 � c � (i, j)] ∧
(Re, ω2, α2) ∈ T [r − 1 � c � (i + 1, j)]

}
⇒ (Re, ω1 ∩ ω2, dα1 ∪ α2e) ∈ T [r � c � (i, j)]

T2,2 =

(R2, {t2,2, t2,3, t2,4, t2,5, t2,6}, 2�2�(1, 1)) (R2, {t2,1, t2,3, t2,4, t2,5, t2,6}, 2�2�(1, 2)) ...
(R3, {t3,1, t3,3, t3,4, t3,5, t3,6}, 2�2�(1, 2)) ...

(R2, {t2,1, t2,2, t2,4, t2,5, t2,6}, 2�2�(2, 1)) ...

... ...

⇓

T2,3 =
(R2, {t2,2, t2,4, t2,5, t2,6}, 3�2�(1, 1)) ...

... ...

A full example: iteration #1, step 1.2 (continued)

The contents of the remaining cells in the tableau can be derived by applying the same
horizontal and vertical merging rules shown in the last two slides:

(Re, ω1, α1) ∈ T [r � c− 1 � (i, j)] ∧
(Re, ω2, α2) ∈ T [r � c− 1 � (i, j + 1)]

}
⇒ (Re, ω1 ∩ ω2, dα1 ∪ α2e) ∈ T [r � c � (i, j)]

(Re, ω1, α1) ∈ T [r − 1 � c � (i, j)] ∧
(Re, ω2, α2) ∈ T [r − 1 � c � (i + 1, j)]

}
⇒ (Re, ω1 ∩ ω2, dα1 ∪ α2e) ∈ T [r � c � (i, j)]

A full example: iteration #1, step 1.3

(R2, ∅, 5�3�(1, 1)) (R2, {t2,1, t2,3, t2,4, }5�3�(1, 2)) (R2, {t2,1, t2,3, t2,4}, 5�3�(1, 3)) R3, ∅, 5�3�(1, 4))
(R3, {t3,1, t3,3, t3,4}, 5�3�(1, 2)) (R3, {t3,1, t3,3, t3,4}, 5�3�(1, 3))

Let’s consider the final state of tableau cell T5,3: rules R2 and R3 were recognized:

• an entry (A, 5�3�(1, 1)) is added to all the pixels in the 5�3�(1, 1) subpicture of the multipicture M ;

• an entry (B, 5�3�(1, 4)) is added to all the pixels in the 5�3�(1, 4) subpicture of the multipicture M .

The final state of the multipicture at the end of iteration 1 is shown in the next slide.

M =

(x, 1�1�(1, 1)) (x, 1�1�(1, 2)) (x, 1�1�(1, 3)) (x, 1�1�(1, 4)) (x, 1�1�(1, 5)) (x, 1�1�(1, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))

(B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(B, 5�5�(1, 1)) (B, 5�5�(1, 2))

(x, 1�1�(2, 1)) (o, 1�1�(2, 2)) (o, 1�1�(2, 3)) (o, 1�1�(2, 5)) (o, 1�1�(2, 5)) (x, 1�1�(2, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))

(B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(B, 5�5�(1, 1)) (B, 5�5�(1, 2))

(x, 1�1�(3, 1)) (o, 1�1�(3, 2)) (o, 1�1�(3, 3)) (o, 1�1�(3, 4)) (o, 1�1�(3, 5)) (x, 1�1�(3, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))

(B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(B, 5�5�(1, 1)) (B, 5�5�(1, 2))

(x, 1�1�(4, 1)) (o, 1�1�(4, 2)) (o, 1�1�(4, 3)) (o, 1�1�(4, 4)) (o, 1�1�(4, 5)) (x, 1�1�(4, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))

(B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(B, 5�5�(1, 1)) (B, 5�5�(1, 2))

(x, 1�1�(5, 1)) (x, 1�1�(5, 2)) (x, 1�1�(5, 3)) (x, 1�1�(5, 4)) (x, 1�1�(5, 5)) (x, 1�1�(5, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))

(B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(B, 5�5�(1, 1)) (B, 5�5�(1, 2))

A full example: iteration #2, step 1.1

Step #1 is applied on the new multipicture. Entire subrectangles of A’s and B’s are recognized by rule R1.

M =

....

... ...
(A, 5�3�(1, 1)) (A, 5�3�(1, 1))

... (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) ...
(A, 5�5�(1, 1)) (A, 5�5�(1, 1))

... ...

... ...
(A, 5�3�(1, 1)) (A, 5�3�(1, 1))

... (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) ...
(A, 5�5�(1, 1)) (A, 5�5�(1, 1))

... ...

...

⇒ T2,2 =

....

...
(R1, {t1,2, t1,3}, 5�3�(1, 1))

... (R1, {t1,2, t1,3}, 5�4�(1, 1)) ...

(R1, {t1,2, t1,3}, 5�5�(1, 1))

... ...

...

A full example: iteration #2, step 1.2

At the end of step 2, cell T5,6 contains the following value:

T2,2 = (R1, ∅, 5�6�(1, 1)) .

Thus, an application area for rule R1 was recognized over the entire multipicture.

A full example: iteration #2, step 1.3

• An element (S, 5�6�(1, 1)) is added to every cell in the multipicture belonging to the
rectangle 5�6�(1, 1), which is the whole picture.

• The picture is therefore recognized.

• The final state of the multipicture is shown in the next slide.

M =

(x, 1�1�(1, 1)) (x, 1�1�(1, 2)) (x, 1�1�(1, 3)) (x, 1�1�(1, 4)) (x, 1�1�(1, 5)) (x, 1�1�(1, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(S, 5�6�(1, 1)) (B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))

(S, 5�6�(1, 1)) (B, 5�5�(1, 1)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))
(S, 5�6�(1, 1)) (S, 5�6�(1, 1))

(x, 1�1�(2, 1)) (o, 1�1�(2, 2)) (o, 1�1�(2, 3)) (o, 1�1�(2, 5)) (o, 1�1�(2, 5)) (x, 1�1�(2, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(S, 5�6�(1, 1)) (B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))

(S, 5�6�(1, 1)) (B, 5�5�(1, 1)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))
(S, 5�6�(1, 1)) (S, 5�6�(1, 1))

(x, 1�1�(3, 1)) (o, 1�1�(3, 2)) (o, 1�1�(3, 3)) (o, 1�1�(3, 4)) (o, 1�1�(3, 5)) (x, 1�1�(3, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(S, 5�6�(1, 1)) (B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))

(S, 5�6�(1, 1)) (B, 5�5�(1, 1)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))
(S, 5�6�(1, 1)) (S, 5�6�(1, 1))

(x, 1�1�(4, 1)) (o, 1�1�(4, 2)) (o, 1�1�(4, 3)) (o, 1�1�(4, 4)) (o, 1�1�(4, 5)) (x, 1�1�(4, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(S, 5�6�(1, 1)) (B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))

(S, 5�6�(1, 1)) (B, 5�5�(1, 1)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))
(S, 5�6�(1, 1)) (S, 5�6�(1, 1))

(x, 1�1�(5, 1)) (x, 1�1�(5, 2)) (x, 1�1�(5, 3)) (x, 1�1�(5, 4)) (x, 1�1�(5, 5)) (x, 1�1�(5, 6))
(A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�3�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4))
(A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�4�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3))
(A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (A, 5�5�(1, 1)) (B, 5�3�(1, 4)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2))
(S, 5�6�(1, 1)) (B, 5�5�(1, 2)) (B, 5�4�(1, 3)) (B, 5�4�(1, 3)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))

(S, 5�6�(1, 1)) (B, 5�5�(1, 1)) (B, 5�5�(1, 2)) (S, 5�6�(1, 1))
(S, 5�6�(1, 1)) (S, 5�6�(1, 1))

In this presentation:

1) What are pictures languages

2) What are Tile-Rewriting Grammars

3) We have a polynomial parsing
technique for Tile-Rewriting
Grammars!

