Introduction to Motorola 68000's
Addressmg Modes

Daniele Paolo Scarpazza
daniele.scarpazza@elet.polimi.it

Politecnico di Milano
Last update: May 11th, 2005

Bibliography

* Textbook:
Hamacher, Vranesic & Zaky
Computer Organization
McGraw-Hill Science
August 2, 2001

e Reference manual:

MOTOROLA M68000 FAMILY
Programmer’s Reference Manual
[1 Motorola Inc., 1992

Available for download at:
http://www.scarpaz.com/processors/

* Acknowledgements

Graphics and sample code adapted from:
http://goforit.unk.edu/asm/mc68000.htm

Tools

* Tool:

EASy68K
Editor/Assembler/Simulator for the 68000
Available at:

http://www.monroeccc.edu/ckelly/easy68k.htm

* The examples we provide here were successfully tested
with thls simulator (unless otherwise specified);

. u—,;;-.c-.ﬁ:ﬁ:'.- OO .F’*’H
SR HARERER i:i:ﬁsu i -

E!- L
226 gt xR0 eiiéiiﬂ!ié:‘:i:‘_—_i?_féf

Flla Fry Ve miren Fl . i
|

L L. s e (R T

H-' w1 “TPMAL r R H LRI AN in=a

4 '-'-‘f'i" .l:--!"-'-‘i‘r “-'F'T- 'I:--\?"_'-" ' # AN

o T e i W B

a
¥ -
& -
||||||||| v
AT T e b r i PP —
LUTEW . AL BN AR ER -
BT T b b B
T i bk BT B
BT ik kAT BE _=,:::"_ 1.1 et
FRL 1 NS T TR A
| e et T8
wwwww PR
B kS F W

Motorola 68000 Assembly basics

* 8 data registers (D0-D7) and 8 address registers (A0-A7)

* The MOVE instruction has syntax:
MOVE source, destination

* The stack in the 68000 family grows
from higher to lower addresses;
push = SP--; pop= SP++;

* Address register A7 is the stack pointer.
* Function calls:

* A6 is used as frame pointer;

* DO is used to return values to the caller;

Addressing modes

Each instruction comprises an operation code,
which specities the function to perform;

Instructions must also define which are the operands for
that function;

An instruction's addressing mode specifies the operands in
one of the following ways:

- by specifying the value of the operand;

- by specitying a register that contains the operand,;

- by specitying how to derive the effective address ot an
operand in memory;

Each addressing has its assembly language syntax;

Addressing modes: summary

Register Direct
* Program Counter Indirect
- Data #1
- with Displ t 7
— Address 4o wi isplacemen 11

. : * Program Counter Indirect with Index
Register Indirect

_ 8Bt displ
~ Address #3 8-Bit displacement #12

- B displ t #1
- Address with Postincrement #4 ase displacemen 3

* P Counter M Indirect
- Address with Predecrement #5 fogram Lounter vViemory ndirec

- Address with Displacement #6 -~ Postindexed #14

Address Register Indirect with Index - Preindexed #15

* Absolute Data Addressing

- 8-Bit displacement #7
- Base displacement #8 -~ Short #16
Memory indirect - Long #17
* Immediate #18

- Postindexed #9
— Preindexed #10

Addressing modes

* Register Direct mode

- #1: Data register direct mode

- #2: Address register direct mode

* In the register direct modes, the instruction
specifies the data or address register containing
the operand;

* Assembly language syntax: Dn or An

Addressing modes

* #3: Address register indirect mode

- the operand is in memory;

- the instruction specifies which address register
contains the address of the operand in memory;

* Assembly language syntax: (An)

Addressing modes

* #4: Address Register Indirect with Postincrement
mode

- the operand is in memory;

- the instruction specifies which address register contains the
address of the operand in memory;

- after the operand address is used, it is incremented
by 1, 2 or 4 depending on the operand size
(byte, word, long word respectively)

- if the address register is stack pointer and operand size is
byte, the address is incremented by 2 to preserve alignment;

* Assembly language syntax: (An) +

Addressing modes

* #5: Address Register Indirect with Predecrement

mode

- the operand is in memory;

- the instruction specifies which address register contains the
address of the operand in memory;

- before the operand address is used, it is decremented
by 1, 2 or 4 depending on the operand size
(byte, word, long word respectively)

- if the address register is stack pointer and operand size is
byte, the address is decremented by 2 to preserve alignment;

* Assembly language syntax: - (An)

Addressing modes

* #6 Address Register Indirect with Displacement

mode

- the operand is in memory;

- the operand’'s address in memory is the sum of:

* an address contained in an address register
(the instruction specifies which register); and

* a 16-bit displacement integer
(the instruction specifies it)

* Assembly language syntax: (d, An)

Addressing modes

* Address Register Indirect with Index mode

- #7 8-Bit Displacement

- #8 Base Displacement

* The operand's address in memory is the sum of:

* an address contained in an address register
(the instruction specifies which register); and

* a scaled index register
(the instruction specifies which register); and

* a 8-bit displacement or a base displacement integer
(the instruction specifies it)

* Assembly language syntax: (d, An, Xn.s)
where s1sone of: B,W, L

Addressing modes

* #9: Memory Indirect Post-indexed mode

- the operand is in memory and
the operand's address is in memory too;

- an intermediate address IA is obtained as:
IA = address (in reg.) + base displacement (in instr.)

- the operand is at the final address, obtained as:
value @A + index (in reg.) + outer displacement (in instr.)

* Assembly language syntax: ([bd+An] ,Xn.s,od)
where s 1s one of: B, W, L

- all four user-specified values are optional;

- if not specified, their value is assumed zero;

Addressing modes

* #10: Memory Indirect Pre-indexed mode

- the operand is in memory and
the operand's address is in memory too;

- an intermediate address IA is obtained as:
IA = address (in reg.) + base displacement (in instr.) +
index (in reg.)
- the operand is at the final address, obtained as:
value @IA + outer displacement (in instr.)

* Assembly language syntax: ([bd,An,Xn.s] , od)
where s 1s one of: B, W, L

- all four user-specified values are optional;

- if not specified, their value is assumed zero;

Addressing modes

* #11: Program Counter Indirect with Displacement

mode

- the operand is in memory;

- the operand’s address is the sum of the address in PC
and a 16-bit displacement (in the instruction);

- the operand is at the final address, obtained as:
value @IA + outer displacement (in instr.);

— this mode 1s allowed only for reads;

* Assembly language syntax: (d, PC)

Addressing modes

* Program Counter Indirect with Index modes

- #12/#13: PC Indirect with Index
(8-Bit/Base Displacement) are like modes #7/#8 Reg.
Indirect with Index, except the PC is the base register;

- the operand's address is the sum of the address in PC,
an 8-bit or base displacement (in the instruction) and
the scaled index (in the index register);

* Assembly language syntax: (d,PC,Xn.s)
where s 1s one of: B, W, L

Addressing modes

* Program Counter Memory Indirect modes

- #14/#15: PC Mem. Indirect Post-/Pre-index modes are
like modes #9/#10 Memory Indirect Post-/Pre-index,
except the PC is the base register;

- the operand's address is the sum of the address in PC,
an 8-bit or base displacement (in the instruction) and
the scaled index (in the index register);

* Assembly language syntax: ([bd,PC] ,Xn.s, od)
([bd,PC,Xn.s],od)
where s 1s one of: B, W, L

Addressing modes

* Absolute addressing modes

- #16: Absolute Short Addressing mode;
- #17: Absolute Long Addressing mode;

- the operand is in memory;

- the operand's address is a 16-/32-bit value in the
instruction;

* Assembly language syntax: (xxx) .W
(xxx) .L

Addressing modes

* #18: Immediate data;

- the operand is in the instruction;

* Assembly language syntax: #xxx

Addressing Mode examples

* Sample code: immediate and
direct addressing modes

***x Example:

START

ORG

CLR

ref000.X68
$1000

DO

MOVE.W #$7F0,DO

MOVE.W #$0008,A0
ADDQ.W #$0008,A1

ADD

STOP
END

W

DO,Al

#52000
START

b S . . D P S

clear value in DO (0 --> DO)

move immediate word into data register

EA of destination i1s data register direct
move 1mmediate word into address register O
add immediate word into address register 1
add DO to current contents Al

EA of source 1s data register direct

EA of destination is address register direct

Addressing Mode examples

* Sample code: address register indirect mode

**x* Example:

DSEG

START

ref001.Xo68
ORG $60
EQU $60
DC.W SFEDC
ORG S1000
MOVE .W #DSEG, AOQ
MOVE . W (A0) ,DO
STOP #S2000
END START

Al
Al
A2
A
A
A5
Af
AT

*

>*

0060

E&,

data segment

data word

“EFEDC”

point A0 to location $0060
load DO from

(AO), eg $S0060

FECC

0050
(052
0054
00hG
(058
0054
(050
(I05E
0060
0062
0064
0066

Addressing Mode examples

* Sample code: address register indirect with
postincrement mode

Useful to: scan tables _@_l -
- cIZE
pop stack Ab DOGO A gg:i
MOVE (A7)+, ... Al 0056
A2 0058
Al 0054
MM (04C
A5 005E
" —— | FZOC 0060
A8 0062
AT 0084
***x Example: ref002.X68 0066
ORG $60 * data segment
DSEG EQU $60
DC.W SFEDC * load two words 1n subsequent locations
DC.W SBA9S8 *
START ORG $1000
MOVE . W #DSEG, AQ * point A0 to location $0060
MOVE.W (AO)+,DO * load DO from (AQO), eg $0060
MOVE.W (AO)+,D1 * load D1 from (AOQ0), now $0062
* now AO is $0064
STOP #52000

END START

Addressing Mode examples

* Sample code: address register indirect with
predecrement mode

Useful to: scan tables backward fgé;"\ gggg
push onto the stack i? 0064 EA 0054
005G
MOVE ..., (A7) -
(27) A2 0058
A3 (054
A4 (05
A5 (05E
— | FEOC | 0060
Al 0063
x%* Example: ref003.X68 A7 0064
ORG $60 * data segment (06A
DSEG EQU $60
DC.W SFEDC * load two words 1n subsequent locations
DC.W S$BA9S *
START ORG $1000
MOVE.W #DSEG+4, A0 * point A0 to location $0064
MOVE.W - (A0),DO * A0 = A0-2 $0062; load DO from (AO0)

MOVE.W - (AO),D1 * A0 = AO0-2 $0060; load D1 from (AO0)

STOP #52000
END START

Addressing Mode examples

* Sample code: address register indirect with
displacement mode

15 0
Displacement 502
/l\ 005
0052
iﬁl 0060 EA (+) ool
15X
L 0053
A3 0054
LY | a5
AR, (052
FEOC | 0061
ig — | RA9A | 006
***x Example: ref004.X68 UUE%
ORG $60 * data segment 0063
DSEG EQU $60
DC.W SFEDC * load two words 1n subsequent locations
DC.W SBA9S8 *
START ORG $1000
MOVE . W #DSEG, A0 * point A0 to location $0060
MOVE.W $2(A0) ,DO * load the second word into DO
STOP #52000

END START

Addressing Mode examples

* Sample code: address register indirect with
index (8-bit) mode . !

Displaccment 2
1Ca]
0050 En + sz
41 T Johy
JCh3
) —{) — 5]
A3 1Che
LE |)
AR i)
FEDZ | J0A]
ij,: — T pE
***x Example: ref005.X68]EEE
0 n IO
ORG 3 Index nnin
DSEG EQU $60
ORG $70 * displaced data segment ($10 bytes later)
DC.W SFEDC * load two words 1n subsequent locations
DC.W SBA98 x
START ORG $1000
MOVE . W #DSEG, AOQ * point A0 to location $0060
MOVE . W #5510, Al * load Al as index register
MOVE.W $02 (A0,A1.W) ,DO * indirect with index addressing mode
STOP #52000

END START

Addressing Mode examples

* Sample code: absolute short addressing mode

*** Example: ref006.X68

ORG $60 * data segment
DSEG EQU $60
DC.W SFEDC * load two words 1n subsequent locations
DC.W $SBA9S8 *
START ORG $1000
MOVE . W #DSEG, A0 * point A0 to location $0060
MOVE . W DSEG+2 ,Al * move (DSEG+2) to Al
MOVE . W Al,DSEG * move Al to (DSEG)
STOP #52000

END START

Addressing Mode examples

* Sample code: absolute long addressing mode

*** Example: ref007.X68
*** Not designed to run in the simulator!!

ORG $60 * data segment
DSEG EQU $60
DC.W SFEDC * load two words 1n subsequent locations
DC.W SBA98 *
START ORG $1000
MOVE $7£000060,A0 * read from absolute location
STOP #52000

END START

Addressing Mode examples

* Sample code: immediate addressing mode

***x Example:
*** Not designed to run in the simulator!!

CR
LF
PPI INIT

PPT CTRL_ADR
PPT DATA ADR

START

ORG

MOVE.
MOVE.
MOVE.
MOVE.

ROR

MOVE.
MOVE.
MOVE.

STOP
END

ref008.X68
EQU S$0A
EQU $O0D
EQU $7f03
EQU SQ7fffffff
EQU $SQ7ffffffe
S1000
W #PPI_INIT,DO
L #PPI_CTRL ADR, A0
L #PPI_DATA ADR,Al
B DO, PPI CTRL ADR
#8, DO
B DO, PPI CTRL ADR
B #CR,DO
B DO, (A1)
#$2000

START

bl D S

address of the control register
address of the control register

move PPI init bytes to DO
move PPI control reg to A0
move PPI data reg to Al
initialise PPI

CR to PPI data reg

Addressing Mode examples

* Sample code: program counter with
displacement

Useful to access memory relative to the current value of the Program Counter.
Example: jumps in position independent code,
reading constants in code segments

***x Example: ref009.X68

START ORG $1000

JMP TABLE END

TABLE : DC.B $20 * table inside the code segment
DC.B $32 *
DC.B $64 *

TABLE END:
MOVE.B TABLE, DO * moves TABLE[O] into DO
MOVE.B TABLE+1l, D1 * moves TABLE[1] into D1

STOP #52000
END START

Addressing Mode examples

* Sample code: program counter with index

This addressing mode extends the program counter relative mode

to include an index and offset value.

* Kk % E

START

xample: ref010.X68

TABLE:

TABLE END:

ORG
JMP
DC.B
DC.B
DC.B

MOVE

MOVE.

ADD

MOVE.

STOP
END

$1000
TABLE END
$20

$32

S64

#0, A0
TABLE (A0) ,DO
#1,A0
TABLE (A0) ,D1
#52000
START

* % X

use A0 as 1ndex register
read TABLE[O] into DO
use A0 as index register
read TABLE[1] into DI

