
Introduction to Motorola 68000's
Addressing Modes

Daniele Paolo Scarpazza
daniele.scarpazza@elet.polimi.it

Politecnico di Milano
Last update: May 11th, 2005

Bibliography
● Textbook:

Hamacher, Vranesic & Zaky
Computer Organization
McGraw-Hill Science
August 2, 2001

● Reference manual:
MOTOROLA M68000 FAMILY
Programmer’s Reference Manual
 Motorola Inc., 1992

Available for download at:
http://www.scarpaz.com/processors/

● Acknowledgements
Graphics and sample code adapted from:
http://goforit.unk.edu/asm/mc68000.htm

Tools
● Tool:

EASy68K
Editor/Assembler/Simulator for the 68000

Available at:
http://www.monroeccc.edu/ckelly/easy68k.htm

● The examples we provide here were successfully tested
with this simulator (unless otherwise specified);

Motorola 68000 Assembly basics
● 8 data registers (D0-D7) and 8 address registers (A0-A7)
● The MOVE instruction has syntax:

MOVE source, destination
● The stack in the 68000 family grows

from higher to lower addresses;
push = SP--; pop= SP++;

● Address register A7 is the stack pointer.
● Function calls:

● A6 is used as frame pointer;
● D0 is used to return values to the caller;

Addressing modes
● Each instruction comprises an operation code,

which specifies the function to perform;
● Instructions must also define which are the operands for

that function;
● An instruction's addressing mode specifies the operands in

one of the following ways:

– by specifying the value of the operand;
– by specifying a register that contains the operand;
– by specifying how to derive the effective address of an

operand in memory;
● Each addressing has its assembly language syntax;

Addressing modes: summary
● Register Direct

– Data #1

– Address #2

● Register Indirect

– Address #3

– Address with Postincrement #4

– Address with Predecrement #5

– Address with Displacement #6

● Address Register Indirect with Index

– 8-Bit displacement #7

– Base displacement #8

● Memory indirect

– Postindexed #9

– Preindexed #10

● Program Counter Indirect

– with Displacement #11

● Program Counter Indirect with Index

– 8-Bit displacement #12

– Base displacement #13

● Program Counter Memory Indirect

– Postindexed #14

– Preindexed #15

● Absolute Data Addressing

– Short #16

– Long #17

● Immediate #18

Addressing modes
● Register Direct mode

– #1: Data register direct mode
– #2: Address register direct mode

● In the register direct modes, the instruction
specifies the data or address register containing
the operand;

● Assembly language syntax: Dn or An

Addressing modes
● #3: Address register indirect mode

– the operand is in memory;
– the instruction specifies which address register

contains the address of the operand in memory;
● Assembly language syntax: (An)

Addressing modes
● #4: Address Register Indirect with Postincrement

mode
– the operand is in memory;
– the instruction specifies which address register contains the

address of the operand in memory;
– after the operand address is used, it is incremented

by 1, 2 or 4 depending on the operand size
(byte, word, long word respectively)

– if the address register is stack pointer and operand size is
byte, the address is incremented by 2 to preserve alignment;

● Assembly language syntax: (An)+

Addressing modes
● #5: Address Register Indirect with Predecrement

mode
– the operand is in memory;
– the instruction specifies which address register contains the

address of the operand in memory;
– before the operand address is used, it is decremented

by 1, 2 or 4 depending on the operand size
(byte, word, long word respectively)

– if the address register is stack pointer and operand size is
byte, the address is decremented by 2 to preserve alignment;

● Assembly language syntax: -(An)

Addressing modes
● #6 Address Register Indirect with Displacement

mode
– the operand is in memory;
– the operand's address in memory is the sum of:

● an address contained in an address register
(the instruction specifies which register); and

● a 16-bit displacement integer
(the instruction specifies it)

● Assembly language syntax: (d, An)

Addressing modes
● Address Register Indirect with Index mode

– #7 8-Bit Displacement
– #8 Base Displacement

● The operand's address in memory is the sum of:
● an address contained in an address register

(the instruction specifies which register); and
● a scaled index register

(the instruction specifies which register); and
● a 8-bit displacement or a base displacement integer

(the instruction specifies it)
● Assembly language syntax: (d, An, Xn.s)

where s is one of: B,W, L

Addressing modes
● #9: Memory Indirect Post-indexed mode

– the operand is in memory and
the operand's address is in memory too;

– an intermediate address IA is obtained as:
IA = address (in reg.) + base displacement (in instr.)

– the operand is at the final address, obtained as:
value @IA + index (in reg.) + outer displacement (in instr.)

● Assembly language syntax: ([bd+An],Xn.s,od)
where s is one of: B,W,L
– all four user-specified values are optional;
– if not specified, their value is assumed zero;

Addressing modes
● #10: Memory Indirect Pre-indexed mode

– the operand is in memory and
the operand's address is in memory too;

– an intermediate address IA is obtained as:
IA = address (in reg.) + base displacement (in instr.) +

index (in reg.)
– the operand is at the final address, obtained as:

value @IA + outer displacement (in instr.)
● Assembly language syntax: ([bd,An,Xn.s],od)

where s is one of: B,W,L
– all four user-specified values are optional;
– if not specified, their value is assumed zero;

Addressing modes
● #11: Program Counter Indirect with Displacement

mode
– the operand is in memory;
– the operand's address is the sum of the address in PC

and a 16-bit displacement (in the instruction);
– the operand is at the final address, obtained as:

value @IA + outer displacement (in instr.);
– this mode is allowed only for reads;

● Assembly language syntax: (d,PC)

Addressing modes
● Program Counter Indirect with Index modes

– #12/#13: PC Indirect with Index
(8-Bit/Base Displacement) are like modes #7/#8 Reg.
Indirect with Index, except the PC is the base register;

– the operand's address is the sum of the address in PC,
an 8-bit or base displacement (in the instruction) and
the scaled index (in the index register);

● Assembly language syntax: (d,PC,Xn.s)
where s is one of: B,W,L

Addressing modes
● Program Counter Memory Indirect modes

– #14/#15: PC Mem. Indirect Post-/Pre-index modes are
like modes #9/#10 Memory Indirect Post-/Pre-index,
except the PC is the base register;

– the operand's address is the sum of the address in PC,
an 8-bit or base displacement (in the instruction) and
the scaled index (in the index register);

● Assembly language syntax: ([bd,PC],Xn.s,od)
 ([bd,PC,Xn.s],od)
where s is one of: B,W,L

Addressing modes
● Absolute addressing modes

– #16: Absolute Short Addressing mode;
– #17: Absolute Long Addressing mode;
– the operand is in memory;
– the operand's address is a 16-/32-bit value in the

instruction;
● Assembly language syntax: (xxx).W

(xxx).L

Addressing modes
● #18: Immediate data;

– the operand is in the instruction;
● Assembly language syntax: #xxx

Addressing Mode examples
● Sample code: immediate and

direct addressing modes

*** Example: ref000.X68

START ORG $1000

 CLR D0 * clear value in D0 (0 --> D0)
 MOVE.W #$7F0,D0 * move immediate word into data register
 * EA of destination is data register direct
 MOVE.W #$0008,A0 * move immediate word into address register 0
 ADDQ.W #$0008,A1 * add immediate word into address register 1
 ADD.W D0,A1 * add D0 to current contents A1
 * EA of source is data register direct
 * EA of destination is address register direct
 STOP #$2000
 END START

Addressing Mode examples
● Sample code: address register indirect mode

*** Example: ref001.X68
 ORG $60 * data segment
DSEG EQU $60
 DC.W $FEDC * data word “FEDC”

START ORG $1000
 MOVE.W #DSEG,A0 * point A0 to location $0060
 MOVE.W (A0),D0 * load D0 from (A0), eg $0060

 STOP #$2000
 END START

Addressing Mode examples
● Sample code: address register indirect with

postincrement mode
Useful to: scan tables

pop stack
MOVE (A7)+, ...

*** Example: ref002.X68
 ORG $60 * data segment
DSEG EQU $60
 DC.W $FEDC * load two words in subsequent locations
 DC.W $BA98 *

START ORG $1000
 MOVE.W #DSEG,A0 * point A0 to location $0060
 MOVE.W (A0)+,D0 * load D0 from (A0), eg $0060
 MOVE.W (A0)+,D1 * load D1 from (A0), now $0062
 * now A0 is $0064
 STOP #$2000
 END START

Addressing Mode examples
● Sample code: address register indirect with

predecrement mode
Useful to: scan tables backward

push onto the stack
MOVE ...,(A7)-

*** Example: ref003.X68
 ORG $60 * data segment
DSEG EQU $60
 DC.W $FEDC * load two words in subsequent locations
 DC.W $BA98 *

START ORG $1000
 MOVE.W #DSEG+4, A0 * point A0 to location $0064
 MOVE.W -(A0),D0 * A0 = A0-2 = $0062; load D0 from (A0)
 MOVE.W -(A0),D1 * A0 = A0-2 = $0060; load D1 from (A0)

 STOP #$2000
 END START

Addressing Mode examples
● Sample code: address register indirect with

displacement mode

*** Example: ref004.X68
 ORG $60 * data segment
DSEG EQU $60
 DC.W $FEDC * load two words in subsequent locations
 DC.W $BA98 *

START ORG $1000
 MOVE.W #DSEG, A0 * point A0 to location $0060
 MOVE.W $2(A0),D0 * load the second word into D0

 STOP #$2000
 END START

Addressing Mode examples

*** Example: ref005.X68
 ORG $60
DSEG EQU $60
 ORG $70 * displaced data segment ($10 bytes later)
 DC.W $FEDC * load two words in subsequent locations
 DC.W $BA98 *

START ORG $1000
 MOVE.W #DSEG, A0 * point A0 to location $0060
 MOVE.W #$10, A1 * load A1 as index register
 MOVE.W $02(A0,A1.W),D0 * indirect with index addressing mode

 STOP #$2000
 END START

● Sample code: address register indirect with
index (8-bit) mode

Addressing Mode examples
● Sample code: absolute short addressing mode

*** Example: ref006.X68
 ORG $60 * data segment
DSEG EQU $60
 DC.W $FEDC * load two words in subsequent locations
 DC.W $BA98 *

START ORG $1000
 MOVE.W #DSEG, A0 * point A0 to location $0060
 MOVE.W DSEG+2,A1 * move (DSEG+2) to A1
 MOVE.W A1,DSEG * move A1 to (DSEG)

 STOP #$2000
 END START

Addressing Mode examples
● Sample code: absolute long addressing mode

*** Example: ref007.X68
*** Not designed to run in the simulator!!

 ORG $60 * data segment
DSEG EQU $60
 DC.W $FEDC * load two words in subsequent locations
 DC.W $BA98 *

START ORG $1000
 MOVE $7f000060,A0 * read from absolute location

 STOP #$2000
 END START

Addressing Mode examples
● Sample code: immediate addressing mode

*** Example: ref008.X68
*** Not designed to run in the simulator!!

CR EQU $0A
LF EQU $0D
PPI_INIT EQU $7f03
PPI_CTRL_ADR EQU $07fffffff * address of the control register
PPI_DATA_ADR EQU $07ffffffe * address of the control register

START ORG $1000
MOVE.W #PPI_INIT,D0 * move PPI init bytes to D0
MOVE.L #PPI_CTRL_ADR,A0 * move PPI control reg to A0
MOVE.L #PPI_DATA_ADR,A1 * move PPI data reg to A1
MOVE.B D0,PPI_CTRL_ADR * initialise PPI
ROR #8,D0
MOVE.B D0,PPI_CTRL_ADR
MOVE.B #CR,D0
MOVE.B D0,(A1) * CR to PPI data reg

 STOP #$2000
 END START

Addressing Mode examples
● Sample code: program counter with

displacement

Useful to access memory relative to the current value of the Program Counter.
Example: jumps in position independent code,

reading constants in code segments

*** Example: ref009.X68

START ORG $1000
JMP TABLE_END

TABLE: DC.B $20 * table inside the code segment
DC.B $32 *
DC.B $64 *

TABLE_END:
MOVE.B TABLE, D0 * moves TABLE[0] into D0
MOVE.B TABLE+1, D1 * moves TABLE[1] into D1

 STOP #$2000
 END START

Addressing Mode examples
● Sample code: program counter with index

This addressing mode extends the program counter relative mode
to include an index and offset value.

*** Example: ref010.X68

START ORG $1000
JMP TABLE_END

TABLE: DC.B $20
DC.B $32
DC.B $64

TABLE_END:

MOVE #0,A0 * use A0 as index register
MOVE.B TABLE(A0),D0 * read TABLE[0] into D0
ADD #1,A0 * use A0 as index register
MOVE.B TABLE(A0),D1 * read TABLE[1] into D1

 STOP #$2000
 END START

