
Notes on the Catalan problem

Daniele Paolo Scarpazza

Politecnico di Milano

Dipartimento di Elettronica e Informazione

Dottorato in Ingegneria dell’Informazione

XVIII Ciclo

Anno Accademico 2003-2004

Notes on the Catalan problem

Daniele Paolo Scarpazza
Politecnico di Milano

scarpazz@elet.polimi.it

March 16th, 2004

Abstract

This paper is about the Catalan numbers. The paper is organized as fol-
lows: section 1 presents a wide variety of problems which all have Catalan
numbers as solution; section 2 presents traditional ways to derive expres-
sions of the Catalan numbers in closed form; section 3 presents a novel in-
terpretation of the problem, based upon formal languages considerations.

Materials of sections 1 and 2 are freely taken and adapted from [1]. Con-
tents of section 3 are original. Considerations in section 4 present topics for
future developments, and were suggested by Emanuale Munarini.

1 An overview of Catalan problems

The Catalan numbers appear as the solution of a variety of problems. They
were first described in the 18th century by Leonhard Euler, when he was at-
tempting to find a general formula to express the number of ways to divide a
polygon with n sides into triangles using non-intersecting diagonals. The se-
quence is named after Eugene Catalan, a belgian mathematician which found
their expression as the solution of the problem of finding how many ways one
can parenthesize a chain of n + 1 letters using n pairs of parentheses such that
there are either two letters, a parenthesized expression and a letter, or two
parenthesized expressions within each pair of parentheses. In this section, we
present a brief overview over a number of counting problems which all lead
to the definition of Catalan numbers. The problem statements are enclosed in
frames, and additional definitions and clarifications follow where necessary.

1.1 Balanced Parentheses

Determine the number of balanced strings of parentheses of length 2n.

A string of parentheses is an ordered collection of symbols “(” and “) ”. A
string of parentheses is said to be balanced when one of the following (equiva-
lent) conditions is met:

• it has the same number of open and close parentheses and every prefix
of the string has at least as many open parentheses as close parentheses;

2

proc checkstring string {
set level 0
for {set i 0} {$i < [llength $string]} {incr i} {

if { [lindex $string $i]=="(" } {
incr level

} else {
if { [lindex $string $i]==")" } {

incr level -1
if {$level < 0} { return 0}

}
}

}
if {$level==0} {

puts $string
return 1

} else {
return 0

}
}

proc recurse { N string } {
if {$N == 0} {

return [checkstring $string]
} else {

return [expr [recurse [expr $N -1] [concat $string)]] + \
[recurse [expr $N -1] [concat $string (]]]

}
}

for {set N 0} {$N <= 12} {incr N 2} {
puts "$N: [recurse $N {}]"

}

Figure 1: A simple Tcl program which enumerates all the strings of balanced
parentheses of length between 0 and 12. Please note that variable N in the
listing takes the values of 2n

• for each closed parenthesis there is a matching open one, preceding it in
the string; and for each open parenthesis there is a matching closed one,
following it in the string;

• the string can be generated by a van Dyck formal grammar, namely a
grammar with the following productions: S → (S)S|ε.

For example, string ()(()()) is balanced, whereas strings)(()) and (()()
are not.

It is a rather easy task to write a simple program which enumerates all the
balanced strings of parentheses of any given length. A simple, recursive im-
plementation, written in the Tcl language, is reported in Figure 1.1. A complete
enumeration of all the balanced parenthesis strings of length 2n, for n between
0 and 6, obtained by running the cited program, is reported in Figure 1.1.

3

Figure 2: Balanced strings of parentheses of length 2n, for n between 0 and 6

n C(n)

0 empty string 1

1 () 1

2 () () (()) 2

3 () () () () (()) (()) () (() ()) 5
((()))

4 () () () () () () (()) () (()) () () (() ()) 14
() ((())) (()) () () (()) (()) (() ()) ()
(() () ()) (() (())) ((())) () ((()) ())
((() ())) (((())))

5 () () () () () () () () (()) () () (()) () () () (() ()) 42
() () ((())) () (()) () () () (()) (()) () (() ()) ()
() (() () ()) () (() (())) () ((())) () () ((()) ())
() ((() ())) () (((()))) (()) () () () (()) () (())
(()) (()) () (()) (() ()) (()) ((())) (() ()) () ()
(() ()) (()) (() () ()) () (() () () ()) (() () (()))
(() (())) () (() (()) ()) (() (() ())) (() ((())))
((())) () () ((())) (()) ((()) ()) () ((()) () ())
((()) (())) ((() ())) () ((() ()) ()) ((() () ()))
((() (()))) (((()))) () (((())) ()) (((()) ()))
(((() ()))) ((((()))))

6 () () () () () () () () () () (()) () () () (()) () () () () (() ()) 132
() () () ((())) () () (()) () () () () (()) (()) () () (() ()) ()
() () (() () ()) () () (() (())) () () ((())) () () () ((()) ())
() () ((() ())) () () (((()))) () (()) () () () () (()) () (())
() (()) (()) () () (()) (() ()) () (()) ((())) () (() ()) () ()
() (() ()) (()) () (() () ()) () () (() () () ()) () (() () (()))
() (() (())) () () (() (()) ()) () (() (() ())) () (() ((())))
() ((())) () () () ((())) (()) () ((()) ()) () () ((()) () ())
() ((()) (())) () ((() ())) () () ((() ()) ()) () ((() () ()))
() ((() (()))) () (((()))) () () (((())) ()) () (((()) ()))
() (((() ()))) () ((((())))) (()) () () () () (()) () () (())
(()) () (()) () (()) () (() ()) (()) () ((())) (()) (()) () ()
(()) (()) (()) (()) (() ()) () (()) (() () ()) (()) (() (()))
(()) ((())) () (()) ((()) ()) (()) ((() ())) (()) (((())))
(() ()) () () () (() ()) () (()) (() ()) (()) () (() ()) (() ())
(() ()) ((())) (() () ()) () () (() () ()) (()) (() () () ()) ()
(() () () () ()) (() () () (())) (() () (())) () (() () (()) ())
(() () (() ())) (() () ((()))) (() (())) () () (() (())) (())
(() (()) ()) () (() (()) () ()) (() (()) (())) (() (() ())) ()
(() (() ()) ()) (() (() () ())) (() (() (()))) (() ((()))) ()
(() ((())) ()) (() ((()) ())) (() ((() ()))) (() (((()))))
((())) () () () ((())) () (()) ((())) (()) () ((())) (() ())
((())) ((())) ((()) ()) () () ((()) ()) (()) ((()) () ()) ()
((()) () () ()) ((()) () (())) ((()) (())) () ((()) (()) ())
((()) (() ())) ((()) ((()))) ((() ())) () () ((() ())) (())
((() ()) ()) () ((() ()) () ()) ((() ()) (())) ((() () ())) ()
((() () ()) ()) ((() () () ())) ((() () (()))) ((() (()))) ()
((() (())) ()) ((() (()) ())) ((() (() ()))) ((() ((()))))
(((()))) () () (((()))) (()) (((())) ()) () (((())) () ())
(((())) (())) (((()) ())) () (((()) ()) ()) (((()) () ()))
(((()) (()))) (((() ()))) () (((() ())) ()) (((() ()) ()))
(((() () ()))) (((() (())))) ((((())))) () ((((()))) ())
((((())) ())) ((((()) ()))) ((((() ())))) (((((())))))

4

1.2 Mountain ranges

Determine the number of “mountain landscapes” which can be formed with n
upstrokes and n downstrokes.

A mountain range is a polyline composed by segments of two types (upstrokes
“/ ”and downstrokes “\ ”), such that its extreme points lie on the same hori-
zontal line, and no segments cross that line. The possible mountain ranges for
0 ≤ n ≤ 3 are shown in Table 1.2

n C(n)

0 * 1

1 /\ 1

2 /\ 2
/\/\ / \

3 /\ 5
/\ /\ /\/\ / \

/\/\/\ /\/ \ / \/\ / \ / \

Figure 3: Possible mountain ranges of length 2n, with 0 ≤ n ≤ 3.

1.3 Diagonal-avoiding paths on a lattice

Given a n×n lattice, determine the number of paths of length 2n which do not
cross the diagonal.

Given a finite lattice composed by points (i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, a path
on that lattice is a connected sequence of horizontal and vertical oriented line
segments that connects node (1, 1) to node (n, n), such that each segment is
either a “west” or “south” segment, more formally each segment is either of
type (i, j)− (i + 1, j) or (i, j)− (i, j + 1).

@
@

@
@

@
@

@
@

@
@

@
@

Figure 4: A sample diagonal-avoiding path in a 7× 7 lattice, corresponding to
the string of balanced parentheses (())(((()))()) .

5

1.4 Multiplication precedence

Determine the number of ways in which n + 1 factors can be multiplied to-
gether, according to the precedence of multiplications.

Examples with 0 ≤ n ≤ 4 are given in Figure 1.4.

n C(n)

0 a 1

1 a · b 1

2 (a · b) · c 2
a · (b · c)

3 ((a · b) · c) · d 5
(a · b) · (c · d)
(a · (b · c)) · d
a · ((b · c) · d)
a · (b · (c · d))

4 (((a · b) · c) · d) · e 14
((a · b) · c) · (d · e)
((a · b) · (c · d)) · e
(a · b) · ((c · d) · e)
(a · b) · (c · (d · e))
((a · (b · c)) · d) · e
(a · (b · c)) · (d · e)
(a · ((b · c) · d)) · e
(a · (b · (c · d))) · e
a · (((b · c) · d) · e)
a · ((b · c) · (d · e))
a · ((b · (c · d)) · e)
a · (b · ((c · d) · e))
a · (b · (c · (d · e)))

Figure 5: Possible multiplication precedences in expressions of n + 1 factors,
with 0 ≤ n ≤ 4.

1.5 Regular polygon triangulation

Determine the number of ways in which a regular polygon with n + 2 edges
can be triangulated.

Triangulating a polygon consists in dividing it in triangles by connecting cou-
ples of non-adjacent vertices via segments which do not cross each other.
Triangulations of regular polygons with 3, 4, 5 and 6 vertices are illustrated in
Figure 6.

6

Figure 6: Possible polygon triangulations, with 1 ≤ n ≤ 4.

1.6 Handshakes across a table

Determine the number of ways in which 2n people sitting around a table can
shake hands without crossing their arms .

The possible hand-shaking configurations for n = 1, 2, 3, 4 are shown in Fig-
ure 7.

Figure 7: Possible handshakes across a table, with 1 ≤ n ≤ 4.

7

1.7 Binary rooted trees

Determine the number of binary rooted trees with n internal nodes.

Given a rooted tree, each non-leaf node is defined as an internal node. Binary
rooted trees with n internal nodes and n ranging from 0 to 3 are shown in
Figure 8.

Figure 8: All the binary rooted trees with n internal nodes, with 0 ≤ n ≤ 3.

1.8 Plane trees

Determine the number of plane trees with n edges.

A plane tree is such that it is possible to draw it on a plane without having
edges crossing each other.

Figure 9: Plane trees with n edges, with 0 ≤ n ≤ 3.

8

1.9 Skew Polyominos

Determine the number of skew polyominos with perimeter 2n + 2.

A polyomino is a figure composed by squares connected by their edges. A

Figure 10: Skew polyominos with perimeter 2n + 2, with 1 ≤ n ≤ 4.

skew polyomino is a polyomino such that every vertical and horizontal line
hits a connected set of squares and such that the successive columns of squares
from left to right increase in height–the bottom of the column to the left is
always lower or equal to the bottom of the column to the right. Similarly, the
top of the column to the left is always lower than or equal to the top of the
column to the right. Figure 10 shows all skew polyominos with perimeter
2n + 2, 1 ≤ n ≤ 4.

9

2 Derivations of the Catalan numbers

2.1 Catalan numbers derived with generating functions

In this section we report a traditional derivation of the closed-form expression
of the Catalan numbers, obtained by setting recurrence relations and solving
them with generating functions.

Recalling the first example of Catalan problems (i.e., balanced strings of
parentheses) we observe that any such string of length n > 0 begins with an
open parentesis, and this open parenthesis matches a closed one, located some-
where in the remainder of the string. It is therefore possible to state that the two
cited parentheses partition the rest of the string in two substrings A and B:

(A)B

and if A contains k pairs of parentheses, B must contain exactly n− k− 1, such
that the number of parenthesis pairs in (A)B is k+(n−k−1)+1 = n. Therefore
the number of balanced strings having n parenthesis pairs is the count of all the
configurations in which A is empty and B contains n−1 pairs, plus the number
of configurations in which A contains 1 pair and B contains n − 2, and so on,
as expressed by:

C1 = C0C0

C2 = C0C1 + C1C0

C3 = C0C2 + C1C1 + C2C0

C4 = C0C3 + C1C2 + C2C1 + C3C0

... = ...

which can be rewritten in the form of the following recurrence relations:

C0 = 1
C1 = 1

Cn =
n−1∑
i=0

CiCn−1−i

We will now solve the above recurrences with the use of generating func-
tions. Let’s start by writing the generating function C(x) corresponding to the
Catalan number succession:

C(x) = C0 + C1 · x + C2 · x2 + ... =
+∞∑
i=0

Ci · xi

Let’s now examine the expression of [C(x)]2 = C(x)C(x), as follows:

C0C0 + (C0C1 + C1C0) x +(C0C2 + C1C1 + C2C0) x2 + ... =
|| || ||
C1 + C2 x + C3 x2 + ...

10

That is, the square of the Catalan generating function is still a generating
function with Catalan coefficients, shifted one position left:

[C(x)]2 = C1 + C2x + C3x
2 =

+∞∑
i=0

Ci+1x
i .

Therefore if we multiply the whole series by x and add C0, the original
Catalan series is obtained:

C(x) = C0 + x[C(x)]2. (1)

The above formula is a quadratic equation, which could be put into the
more familiar form:

xC2 − C + C0 = 0,

where C (was C(x)) is the unknown and x,C0 are constant coefficients.
Replacing C0 with its value (i.e., 1), the solution is trivially given by:

C =
1±

√
1− 4x

2x
.

Of the two solutions given by the± sign, only the− is acceptable, being C0 = 1:

C =
1−

√
1− 4x

2x
. (2)

The solution contains the power of a binomial with fractional exponent:√
1− 4x = (1− 4x)1/2 =

∑
n≥0

(
1/2
n

)
(−4x)n, which can be expanded as:

(1− 4x)1/2 = 1− 1/2
1

4x +
(1/2)(−1/2)

2 · 1
(4x)2 +

+
(1/2)(−1/2)(−3/2)

3 · 2 · 1
(4x)3 +

+
(1/2)(−1/2)(−3/2)(−5/2)

4 · 3 · 2 · 1
(4x)4 + ...

which can be simplified as follows:

(1− 4x)1/2 = 1− 1
1!

2x +
1
2!

4x2 + (3)

− 3 · 1
3!

8x3 +
5 · 3 · 1

4!
16x4 + ...

Now, substituting equation 3 in 2, we obtain:

C(x) = 1− 1
2!

2x +
3 · 1
3!

4x2 + (4)

+
5 · 3 · 1

4!
8x3 +

7 · 5 · 3 · 1
5!

16x4 + ...

11

We can get rid of terms like 7 · 5 · 3 · 1 (factorials missing the even factors),
by considering that:

22 · 2! = 4 · 2
23 · 3! = 6 · 4 · 2
24 · 4! = 8 · 6 · 4 · 2

... = ...

2n · n! =
n∏

i=1

2i

Consequently:

C(x) = 1 +
1
2
(

2!
1!1!

)x +
1
3
(

4!
2!2!

)x2 +
1
4
(

6!
3!3!

)x2 =

=
+∞∑
i=0

1
1 + i

(
2i

i

)
zi

Therefore, the ith Catalan number is:

Ci =
1

1 + i

(
2i

i

)
.

2.2 The simplest proof

The simplest derivation of a closed form for Catalan numbers known to the au-
thor is suggested by considerations on the problem of diagonal-avoiding paths
on a lattice, described in § 1.3. Determining the n-th Catalan number equals
counting the total number of paths through the grid and then subtracting the
number of invalid paths, namely the ones which cross the diagonal.

@
@

@
@

@
@

@
@

@
@

Figure 11: An invalid (diagonal-crossing) path in a 5× 5 lattice.

Figure 11 illustrates an example of an invalid path, which crosses the diag-
onal. Invalid paths may cross the diagonal multiple times, but for each invalid
path there always exist a first time in which the diagonal is crossed, more for-
mally a down-oriented segment of coordinates (i, i)− (i, i + 1), for some i. The
point of coordinates (i, i + 1) is the first illegal reached point, and will be re-
ferred as P from now on. Now, let’s transform each invalid path according

12

to the following rule: starting from point P on, we will replace each “south”
segment with a “west” segment and vice versa. Figure 12 illustrates the result
of transforming the invalid path depicted in Figure 11 according to the above
rules.

@
@

@
@

@
@

@
@

@
@

Figure 12: The transformed path.

Please note that, since the transformation starts at point (i, i + 1) (i.e. after i
“west” and i + 1 “south” segments), and it causes the remaining n − i “west”
segments to be replaced by “south” segments and the remaining n − i − 1
“south” segments to be replaced by “west” segments, it can be proved that
the new ending coordinates will be (i + (n − i − 1), (i + 1) + (n − i)), that is,
(n− 1, n + 1).

Therefore it is correct to say that the above transformation turns a n × n
illegal path into a (n− 1)× (n + 1) path. By construction of the transformation
rule, every illegal path in the n × n lattice corresponds to exactly one non-
constrained path in (n− 1)× (n + 1) lattice.

Since the number of paths in a a× b lattice is
(
a+b

a

)
, the total number of non-

constrained paths through the n × n lattice is
(
2n
n

)
, whereas the total number

of invalid paths in the same n × n lattice is equal to the number of paths in
a (n − 1) × (n + 1), that is

(
2n

n+1

)
, therefore the total number of non diagonal-

crossing paths is given by:

Cn =
(

2n

n

)
−

(
2n

n + 1

)
=

(
2n

n

)
− n

n + 1

(
2n

n

)
=

1
n + 1

(
2n

n

)
.

13

3 A novel interpretation

In this section we will give a novel calculation of the Catalan numbers, inspired
by formal language considerations. The contents of this section are, to the best
of our knowledge, original.

The language of balanced parentheses is a well-known and studied exam-
ple in the field of formal languages, under the name of Van Dyck languages.
In the case of a single type of parentheses (i.e., (,) , no square, curly or an-
gular brackets), the grammar which generates the above language is given as
follows:

G = (Σ, N, S,R)
Σ = {(,)}
N = {S}
R = {r1, r2}
r1 : S → ε

r2 : S → (S)S

The above formulae define a grammar with an alphabet composed by (
and) , a single non-terminal symbol, called S, which is also the start symbol
(a.k.a. the axiom) for the grammar, and two rules, r1 and r2.

Given a grammar, a sentential form is a sequence of terminal and nontermi-
nal symbols which can be derived from the start symbol S. Strings belonging
to the language generated by a given grammar are special sentential forms,
composed of terminal symbols only.

Each sentential form contains a number n of nonterminal symbols and t
terminal symbols. We will label such a sentential form with a (n, t) label. Con-
sequently, strings ∈ L(G) will be labeled (0, 2i), i ∈ NN . It is easy to prove that
the number of terminal symbols is even: the axiom, S contains no terminal
symbol (0 is even), and both r1 and r2 rules preserve parity.

Let’s now define a derivation step as a substitution which replaces a single S
symbol in a sentential form with the right-hand side of rule r1 or r2. If a sen-
tential form containing a certain number of terminal and non-terminal symbols
(thus labelled (n, t)) is rewritten, its derived form will:

• have one nonterminal symbol less than the original, and the same num-
ber of terminals, if rule r1 was applied;

• have one more non-terminal symbols more and two terminal symbols
more than the original form, if rule r2 was applied.

This is graphically expressed in figure 13.
Let’s now consider a given sentential form, with label (n, t), and determine

all the possible labels of sentential forms which could have derived it. There
are only two:

• an (n + 1, t) form, from which our form derived through rule r1; and

• an (n− 1, t− 2) form, from which our form derived through rule r2.

14

(n,t)

(n-1,t)

(n+1,t+2)

����*

HHHHj

r1

r2

Figure 13: A balanced (n, t)−sentential form can derive an (n−1, t)−sentential
form via rule r1, or a (n + 1, t + 2)−sentential form through rule r2.

(n+1,t)

(n,t)

(n-1,t-2)

�����

HHHHY r1

r2

Figure 14: An (n, t)−sentential form could have been derived either from an
(n + 1, t)−form via rule r1 or from an (n− 1, t− 2)−form via rule r2.

The above considerations are summarized in Figure 14.
Therefore, given the label of a sentential form, figure 13 indicates how to

find the labels of the sentential forms of its derivation-predecessors. Applying
recursively the same algorithm on them, it is possible to trace back up to the
axiom, which has obviously label (1, 0). Please note that, due to the simplicity
of our grammar (more precisely to the fact that N contains the only element S),
it is trivial to prove that the axiom can only have label (1, 0) and, conversely,
label (1, 0) can correspond to the axiom only.

Figure 14 seems to suggests that each sentential form has exactly two
derivation predecessors. This is not true, in particular:

• a (1, 0) form has no predecessor by definition, being the axiom;

• (0, t) and (1, t) forms can only have a (n + 1, t) predecessor. (Proof: by
contradiction, the (n− 1, t− 2) predecessor would have zero or less non-
terminals, therefore it could have no successors.)

• (n, t) forms with n > t do not exist, apart from the axiom (1, 0). (Proof: by
induction. For each form (n, t) let’s consider the t − n difference. Given
a form f having this difference = δ, both after the application of rule r1

and r2, the new value of this difference is δ + 1. Therefore, the axiom has
δ = −1,but after the first derivation δ = 0, and at each derivation, δ is
incremented.)

According to Figure 14 and the above constraints, the whole derivation tree
for any given sentential form can be drawn. Derivation trees for the strings
(0, 2), (0, 4), (0, 6) and (0, 8) are shown in Figures 15 and following. Axiom
nodes are marked with an exclamation mark “!”, whereas invalid nodes are
marked with a “×” sign.

15

(1,0) !

(2,2)

(1,2)

(0,2)

Figure 15: Derivation tree for (0, 2), i.e., 2n = 2

Please note that each derivation tree, built according to the above rules,
starts with a label corresponding to a language string, (0, 2i), and reaches leaf
nodes which are either axioms or invalid nodes. The number of axioms con-
tained in the tree of a given (0, 2i)-string is the number of different ways in
which the axiom can derive a (0, 2i)-string, therefore the number of different
strings of balanced parentheses of length 2i since each derivation is unique.

The reader is kindly asked to count axiom nodes in the each of the reported
(0, 2i)-derivation trees, and verify that the count is the ith Catalan number.
According to the above rules, the ith Catalan number can also be derived by
counting the number of axiom nodes in the derivation tree of a (0, t) form, with
t = 2i, as expressed by the following recurrence relation:

R(n, t) =

1 if (n = 1 ∧ t = 0)
0 if n > t
R(n + 1, t) if n <= 1
R(n− 1, t− 2) + R(n + 1, t) otherwise.

By construction,
Ci = R(0, 2i).

The above relation R was implemented as recursive Tcl function (shown in
Figure 3) and tested for correctness.

16

(1,0)! (3,2)×
�

�
e
e

(2,2)

(1,2)

(1,0)! (3,2)×
�

�
e
e

(2,2)

(3,2)× (5,4)×
�

�
@
@

(4,4)

����
HHHH

(3,4)

�������
HHHH

(2,4)

(1,4)

(0,4)

Figure 16: Derivation tree for (0, 4), i.e., 2n = 4

(1,0)!(3,2)×

 AA

(2,2)

(1,2)

(1,0)!(3,2)×

 AA

(2,2)

(3,2)×(5,4)×

 JJ

(4,4)

���
ZZZ

(3,4)

�����
ZZZ

(2,4)

(1,4)

(1,0)!(3,2)×

 AA

(2,2)

(1,2)

(1,0)!(3,2)×

 AA

(2,2)

(3,2)×(5,4)×

 JJ

(4,4)

���
ZZZ

(3,4)

�����
ZZZ

(2,4)

(1,0)!(3,2)×

 AA

(2,2)

(3,2)×(5,4)×

 JJ

(4,4)

���
ZZZ

(3,4)

(3,2)×(5,4)×

 JJ

(4,4)

(5,4)×(7,6)×

 JJ

(6,6)

���
QQQ

(5,6)

�����
PPPPP

(4,6)

((((((((((
XXXXXXX

(3,6)

((((((((((((((((
XXXXXXX

(2,6)

(1,6)

(0,6)

Figure 17: Derivation tree for (0, 6), i.e., 2n = 6

17

(0,8
+--(1,8 | | | | | +--(4,6
| +--(2,8 | | | | | | +--(3,4
| | +--(1,6 | | | | | | | +--(2,2
| | | +--(2,6 | | | | | | | | +--(1,0) 1
| | | | +--(1,4 | | | | | | | +--) 1
| | | | | +--(2,4 | | | | | | | +--(4,4
| | | | | | +--(1,2 | | | | | | | +--) 0
| | | | | | | +--(2,2 | | | | | | +--) 1
| | | | | | | | +--(1,0) 1 | | | | | | +--(5,6
| | | | | | | +--) 1 | | | | | | | +--(4,4
| | | | | | +--) 1 | | | | | | | +--) 0
| | | | | | +--(3,4 | | | | | | | +--(6,6
| | | | | | | +--(2,2 | | | | | | | +--) 0
| | | | | | | | +--(1,0) 1 | | | | | | +--) 0
| | | | | | | +--) 1 | | | | | +--) 1
| | | | | | | +--(4,4 | | | | +--) 3
| | | | | | | +--) 0 | | | +--) 5
| | | | | | +--) 1 | | | +--(4,8
| | | | | +--) 2 | | | | +--(3,6
| | | | +--) 2 | | | | | +--(2,4
| | | | +--(3,6 | | | | | | +--(1,2
| | | | | +--(2,4 | | | | | | | +--(2,2
| | | | | | +--(1,2 | | | | | | | | +--(1,0) 1
| | | | | | | +--(2,2 | | | | | | | +--) 1
| | | | | | | | +--(1,0) 1 | | | | | | +--) 1
| | | | | | | +--) 1 | | | | | | +--(3,4
| | | | | | +--) 1 | | | | | | | +--(2,2
| | | | | | +--(3,4 | | | | | | | | +--(1,0) 1
| | | | | | | +--(2,2 | | | | | | | +--) 1
| | | | | | | | +--(1,0) 1 | | | | | | | +--(4,4
| | | | | | | +--) 1 | | | | | | | +--) 0
| | | | | | | +--(4,4 | | | | | | +--) 1
| | | | | | | +--) 0 | | | | | +--) 2
| | | | | | +--) 1 | | | | | +--(4,6
| | | | | +--) 2 | | | | | | +--(3,4
| | | | | +--(4,6 | | | | | | | +--(2,2
| | | | | | +--(3,4 | | | | | | | | +--(1,0) 1
| | | | | | | +--(2,2 | | | | | | | +--) 1
| | | | | | | | +--(1,0) 1 | | | | | | | +--(4,4
| | | | | | | +--) 1 | | | | | | | +--) 0
| | | | | | | +--(4,4 | | | | | | +--) 1
| | | | | | | +--) 0 | | | | | | +--(5,6
| | | | | | +--) 1 | | | | | | | +--(4,4
| | | | | | +--(5,6 | | | | | | | +--) 0
| | | | | | | +--(4,4 | | | | | | | +--(6,6
| | | | | | | +--) 0 | | | | | | | +--) 0
| | | | | | | +--(6,6 | | | | | | +--) 0
| | | | | | | +--) 0 | | | | | +--) 1
| | | | | | +--) 0 | | | | +--) 3
| | | | | +--) 1 | | | | +--(5,8
| | | | +--) 3 | | | | | +--(4,6
| | | +--) 5 | | | | | | +--(3,4
| | +--) 5 | | | | | | | +--(2,2
| | +--(3,8 | | | | | | | | +--(1,0) 1
| | | +--(2,6 | | | | | | | +--) 1
| | | | +--(1,4 | | | | | | | +--(4,4
| | | | | +--(2,4 | | | | | | | +--) 0
| | | | | | +--(1,2 | | | | | | +--) 1
| | | | | | | +--(2,2 | | | | | | +--(5,6
| | | | | | | | +--(1,0) 1 | | | | | | | +--(4,4
| | | | | | | +--) 1 | | | | | | | +--) 0
| | | | | | +--) 1 | | | | | | | +--(6,6
| | | | | | +--(3,4 | | | | | | | +--) 0
| | | | | | | +--(2,2 | | | | | | +--) 0
| | | | | | | | +--(1,0) 1 | | | | | +--) 1
| | | | | | | +--) 1 | | | | | +--(6,8
| | | | | | | +--(4,4 | | | | | | +--(5,6
| | | | | | | +--) 0 | | | | | | | +--(4,4
| | | | | | +--) 1 | | | | | | | +--) 0
| | | | | +--) 2 | | | | | | | +--(6,6
| | | | +--) 2 | | | | | | | +--) 0
| | | | +--(3,6 | | | | | | +--) 0
| | | | | +--(2,4 | | | | | | +--(7,8
| | | | | | +--(1,2 | | | | | | | +--(6,6
| | | | | | | +--(2,2 | | | | | | | +--) 0
| | | | | | | | +--(1,0) 1 | | | | | | | +--(8,8
| | | | | | | +--) 1 | | | | | | | +--) 0
| | | | | | +--) 1 | | | | | | +--) 0
| | | | | | +--(3,4 | | | | | +--) 0
| | | | | | | +--(2,2 | | | | +--) 1
| | | | | | | | +--(1,0) 1 | | | +--) 4
| | | | | | | +--) 1 | | +--) 9
| | | | | | | +--(4,4 | +--) 14
| | | | | | | +--) 0 +--) 14
| | | | | | +--) 1) 14
| | | | | +--) 2

Figure 18: Derivation tree for (0, 8), i.e., 2n = 8. For lack of space, the tree struc-
ture was represented in a column form and illegal nodes were not reported.

18

Figure 19: A simple Tcl program which implements the recursive function
R(n, t).

proc R { n t } {
if {$n == 1 && $t == 0} { return 1 }
if {$n > $t } { return 0 }
if {$n <= 1 } { return [R [expr $n+1] $t] }

return [expr [R [expr $n-1] [expr $t-2]] \
+ [R [expr $n+1] $t]]

}

Figure 20: The first values of R(n, t)

t/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 5 5 5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 14 14 14 9 4 1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 42 42 42 28 14 5 1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 132 132 132 90 48 20 6 1 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 429 429 429 297 165 75 27 7 1 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 1430 1430 1430 1001 572 275 110 35 8 1 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 4862 4862 4862 3432 2002 1001 429 154 44 9 1 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 16796 16796 16796 11934 7072 3640 1638 637 208 54 10 1 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 58786 58786 58786 41990 25194 13260 6188 2548 910 273 65 11 1 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 208012 208012 208012 149226 90440 48450 23256 9996 3808 1260 350 77 12 1 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 742900 742900 742900 534888 326876 177650 87210 38760 15504 5508 1700 440 90 13 1 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 2674440 2674440 2674440 1931540 1188640 653752 326876 149226 62016 23256 7752 2244 544 104 14 1 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 9694845 9694845 9694845 7020405 4345965 2414425 1225785 572033 245157 95931 33915 10659 2907 663 119 15 1 0

19

Figure 21: Plot of the surface R(n, t). Points with odd values of t were not
plotted.

Figure 22: Plot of the surface log R(n, t). Points with odd values of t were not
plotted.

20

4 Future Developments

This section contains a number of considerations based upon language enu-
meration techniques, which pose a first basis for the achievement of a closed
form for R.

If D is the language defined by the production:

S → ε | (S)S,

then D can be recursively written as:

D = {ε} + (D)D (5)

where the + symbol denotes the operation of disjoint set union.
If an alphabet A = {a1, a2, ..., am} is considered, A∗ denotes the language

of all the strings over alphabet A, and if α ∈ A∗ is a string over A, |α| denotes
the length of α, i.e. the count of symbols which compose α. For a language A∗,
a function w : A∗ → Z[[x]] can be defined in the following manner:

w(α) = x|α|, with α ∈ A∗

and we set by convention that w(ε) = 1.
It is trivial to prove that function w exhibits the following property:

∀α, β ∈ A∗, w(α · β) = w(α)w(β),

where the · symbol denotes the operation of string concatenation. w can be
extended on languages, by defining w(L) =

∑
α∈L w(α). Therefore

w(A∗) =
∑

α∈A∗

w(α) =
∑

α∈A∗

x|α| =
∑
n≥0

 ∑
|α|=n

1

 xn =
∑
n≥0

mnxn =
1

1−mx
.

As a consequence of 5, the following equation can be set for language D:

w(D) = 1 + x2w(D)2

which is closely related to equation 1 and can be solved similarly, by replacing
y = w(D), thus obtaining y = 1 + x2y2, which can be put into a more familiar
form as x2y2 − y + 1 = 0. The solution is given by:

y =
1−

√
1− 4x2

2x2
(6)

By applying the same techniques shown in §2.1, it can be shown that:

D(x) = w(D) = D0 + D2x
2 + D4x

4 + D6x
6 + ...

where ∀i ∈ N, D2i = Ci and D2i+1 = 0, therefore

D(x) = w(D) = C0 + C1x
2 + C2x

4 + C3x
6 +

Our aim is now to extend the above considerations to the language of all
the sentential forms of grammar G, introduced in §3, that we will call E from

21

now on. As we showed, each string in D corresponds to exactly one mountain
range (as described in §1.2); it is worth noting that each string in E corresponds
to exactly one extended mountain range, where not only upstrokes and down-
strokes are allowed, but also horizontal strokes. For example, the following
string is a string of N : (S)(S)((S)(S(S)))S, and its corresponding extended
mountain range representation follows:

_
_ _/ \

_ _ / \/ \
/ \/ \/ _

The language E of sentential forms of grammar G is a new language, can be
defined by the a new grammar H , given as follows:

H = (Σ′, N, B, R′)
Σ′ = {(,), S}
N = {B}
R = {r1, r2, r3}
r1 : B → ε

r2 : B → SB

r3 : B → (B)B

Please note that S is a terminal symbol for grammar H . The above language
is called the Motzkin language [3]. As we did with equation 5, considering the
production:

B → ε | SB | (B)B,

we give now a recursive definition of E:

E = {ε} + SE + (E)E. (7)

It is then time to introduce a newer, more useful definition of w(α):

w(α) = xp(α)yo(α)z|α|

where p(α) = |α|(+ |α|), and o(α) = |α|S , therefore p(α) + o(α) = |α|. From
the recursive definition of E given in 7, as done for 7, it is possible to set the
following equation:

w(E) = 1 + yzw(E) + x2z2w(E)2,

which, replacing e = w(E), is:

x2z2e2 + (yz − 1)e + 1 = 0,

which, solved by e yields:

e =
1− yz −

√
1− 2yz + y2z2 − 4x2z2

2x2z2

22

Thus e(x, y, z) can be written as a formal power series with coefficients Ei,j,k:

e(x, y, z) = E0,0,0 +
+ E1,0,0x + E0,1,0y + E0,0,1z +
+ E2,0,0x

2 + E0,2,0y
2 + E0,0,2z

2 + E1,1,0xy + E0,1,1yz + E1,0,1xz +
+ ...

It is now evident that the number of sentential forms with n nonterminals and
t terminals, previously called R(n, t) is given by :

R(n, t) = En,t,n+t = [xtyn]e(x, y, 1),

where the notation [...] has the following meaning [xn]f(x) = fn ⇔ f(x) =∑
n≥0 fnxn, in particular [xiyjzk]e(x, y, z) = Ei,j,k. Furthermore, an expression

of e(x, y, 1) can be obtained by restriction:

e(x, y, 1) = e(x, y, z)|z=1 =
1− y −

√
1− 2y + y2 − 4x2

2x2
(8)

Incidentally, the i-th Catalan number, which was equal to R(0, 2i) can be
obtained by setting y = 0, thus:

e(x, 0, 1) = e(x, y, 1)|y=0 =
1−

√
1− 4x2

2x2
,

which is identical to equation 6 and admits the same solutions.
To obtain an expression of R(i, j), in equation 8 we can collect (1− y) in the

numerator and (1− y)2 in the denominator, thus obtaining:

e =
1− y

(1− y)2
1−

√
1− 4 x2

(1−y)2

2x2

(1−y)2

=
1

1− y

1−
√

1− 4q2

2q2

∣∣∣∣
q= x

1−y

,

which can be solved by comparison with equation 6, thus:

e =
1

1− y
D

(
x

1− y

)
but since

D(q) =
1−

√
1− 4q2

2q2
=

∑
k≥0

Dkqk

then

e =
1

1− y

∑
k≥0

Dk
xk

(1− y)k
=

∑
k≥0

Dk
xk

(1− y)k+1

=
∑
k≥0

Dkxk
∑
n≥0

(
n + k

k

)
yn

=
∑

n,k≥0

(
n + k

k

)
Dkxkyn

23

therefore it should be true that:

R(n, k) =
{

0 if k odd(
n+k

k

)
Ck/2 if k even

Unfortunately the above equation was sperimentally verified to be incor-
rect. The cause is due to the fact that the real language of the sentential forms
of E is smaller than L(H); proof: S, SS, SSS, ...S(), S(S), ... ∈ L(H) − E, thus
the above equations need to be rewritten.

Our current efforts are devoted to finding a new correct and unambiguous
grammar for language E, obtaining an appropriate recursive definition of E
and a corresponding equation for w(E), which, solved, would yield a formal
power series for w(E), thus, a closed form for R(n, t) numbers.

Bibliography

1. Tom Davis, Catalan Numbers, http://www.geometer.org/mathcircles ,
2001.

2. Kenneth P. Bogart, Combinatorics through Guided Discovery, 2002.

3. Robert Stoyan, Volker Strehl, Enumeration of Hamiltonian Circuits in Rect-
angular Grids, 1994.

4. Eric W. Weisstein, Catalan Number, From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/CatalanNumber.html

24

