

TEST: A Tracer for Extracting Speculative Threads

Michael K. Chen
Stanford University

mikey@hydra.stanford.edu

Kunle Olukotun
Stanford University

kunle@ogun.stanford.edu

Abstract
Thread-level speculation (TLS) allows sequential

programs to be arbitrarily decomposed into threads that
can be safely executed in parallel. A key challenge for
TLS processors is choosing thread decompositions that
speedup the program. Current techniques for identifying
decompositions have practical limitations in real systems.
Traditional parallelizing compilers do not work effectively
on most integer programs, and software profiling slows
down program execution too much for real-time analysis.

Tracer for Extracting Speculative Threads (TEST) is
hardware support that analyzes sequential program
execution to estimate performance of possible thread
decompositions. This hardware is used in a dynamic
parallelization system that automatically transforms
unmodified, sequential Java programs to run on TLS
processors. In this system, the best thread decompositions
found by TEST are dynamically recompiled to run
speculatively. This paper describes the analysis performed
by TEST and presents simulation results demonstrating its
effectiveness on real programs. Estimates are also
provided that show the tracer requires minimal hardware
additions to our speculative chip-multiprocessor (< 1% of
the total transistor count) and causes only minor
slowdowns to programs during analysis (3-25%).

1. Introduction
Modern compilers that perform array datra-dependence

analysis can automatically parallelize Fortran-like
numerical applications on traditional multiprocessors
[2][5][14][27]. Unfortunately, numerous challenges have
made automatic compiler parallelization of general integer
programs difficult. Analyzing pointer aliasing, control
flow, irregular array accesses, and dynamic loop limits as
well as handling inter-procedural analysis complicate static
dependence analysis [3][21]. These difficulties introduce
imprecision into dependence relations, limit the accuracy
of parallelism estimates, and force conservative
synchronization to safely handle potential dependencies
when running on a traditional multiprocessor.

Thread-level speculation (TLS) is a technique that
enables parallel execution of sequential applications on
tightly coupled multiprocessors without explicit

synchronization. With TLS, a sequential program can be
decomposed into threads to be run on the processors
without regard to memory dependencies. The threads are
sequenced in the order in which they would execute
sequentially, but are actually executed in parallel. Data
speculation hardware support ensures that true
dependencies between memory accesses are honored
across threads by backing up and restarting threads that
execute an inter-thread dependent load too early.

We have designed Hydra, a chip multiprocessor (CMP)
with thread speculation support [15]. The granularity of
speculative threads targeted by Hydra ranges from 10s to
1000s of instructions. We would like decompositions to
be chosen automatically because such fine-grained threads
are impractical to manually identify in large programs and
are smaller than threads that should be explicitly coded by
a programmer.

A CMP with speculation support allows us to approach
automatic parallelization differently. Chip multiprocessors
combine several CPUs onto one die with a tightly coupled
memory interface. The high-bandwidth, low latency
interconnect and small number of processors (four) in
Hydra reduces the importance of parallelizing compiler
optimizations like blocking and loop reordering that
minimize inter-processor communication in traditional
multiprocessors. Potential write-after-read (WAR) and
write-after-write (WAW) hazards, which must be
identified and correctly ordered by the compiler in
traditional multiprocessors, are automatically handled by
the speculation hardware and never exact performance
penalties.

TLS simplifies many automatic parallelization
challenges, but there are significant constraints that must
be considered. On Hydra, the major constraints are:
• True inter-thread data dependencies, or read-after-write

(RAW) hazards, always limit speedup from parallel
execution of speculative threads.

• Speculative read and write state that is buffered by the
hardware may overflow for large, long-running
speculative threads, forcing speculative execution to
stall until a load or store can be performed safely.

• Only one thread decomposition may be active (e.g. one
loop in a loop nest) at a given time.

• Compiled speculative thread code introduces sequential

© 2003 IEEE. Published in the Proceedings of CGO’03, 24-26 March 2003 in San Francisco, CA, USA. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service
Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

overheads [22][29] from speculative thread
management routines and forced communication of
inter-thread dependent local variables.
These constraints impose conflicting requirements

when selecting thread decompositions. While threads can
be composed in many ways [23][7][15], most research has
focused on decompositions based on loops because
experimentally, they have yielded the most performance
gains. A speculative thread loop (STL) is a loop
decomposed into threads where one loop iteration is one
thread. Applying the constraints to these decompositions,
speculating on small loops limits parallel coverage and
suffers from higher speculative thread overheads relative
to work performed. Speculating on large loops increases
the probability of speculation buffer overflows and may
incur higher dependency violation penalties.

Previous studies of TLS processors have relied on
simulation and profiling to identify appropriate STLs
[23][29]. In these studies, cycle-accurate CPU simulators
with dependence analysis of executing memory references
were used to deduce performance estimates of potential
STLs. These results were used to select the best STLs for
actual speculative execution. This type of dynamic
analysis is computationally expensive, slowing execution
over 100x during analysis, but is effective and bypasses
the difficulties of static compiler analysis.

Dynamic analysis to identify STLs complements a TLS
processor’s ability to parallelize optimistically and use
hardware to guarantee correctness. The primary goal is to
identify where parallelism usually exists. As stated earlier,
integer program characteristics force dependency analysis
using static compilers to be conservative and imprecise,
making it difficult deduce program parallelism. These
characteristics also make it difficult to statically estimate
thread size and buffer requirements essential to predicting
speculative performance. Profiling, on the other hand, can
provide accurate statistics on dynamic dependency
behavior, thread size, and buffer requirements for most
types of programs.

In this paper, we present Tracer for Extracting
Speculative Threads (TEST), hardware support in Hydra
for low-overhead profiling of potential STLs. Along with
a Java virtual machine (JVM), Hydra with TEST and TLS
support are used together to create the Java Runtime
Parallelizing Machine (Jrpm), a complete system that uses
speculative threads to dynamically parallelize sequential
Java programs.

Virtual machines (VMs) like the JVM and Microsoft’s
Rotor (for C#) have become commercially popular in
recent years as a way of supporting applications without
being tied to a specific operating system or processor
architecture. Our system demonstrates how this
virtualization can be used in a novel way to seamlessly
support new execution models without modifying existing
platform independent program sources. Key to making

this work is the VM’s platform-independent bytecode
representation and dynamic recompilation support.

In the Jrpm system, the compiler derives a control-flow
graph from program bytecodes and analyzes it to identify
potential STLs. A program that has been dynamically
compiled with instructions annotating local variables and
STL boundaries is executed as a sequential program on a
single processor of Hydra. The trace hardware collects
statistics for the prospective STLs. The JVM takes results
from TEST analysis to identify the best code sub-sections
to dynamically recompile into speculative threads. By
relying on dynamic execution profiles collected by TEST,
a simple scalar compiler is all that is required to generate
the speculative threads.

The contributions of this paper are:
• We show how potential STLs are selected from Java

programs and describe a simple trace algorithm to
select optimal decompositions quickly. The analysis
extracts speculative thread coverage, data dependence
timing, and speculative state requirements from
potential STLs, and identifies the best decompositions
by comparing the collected statistics. The analysis also
generates dependency profiles for directing compiler
optimizations and performance tuning by a
programmer to improve speculative thread
performance.

• We describe the hardware and software for
implementing the trace algorithm on Hydra. During
analysis, this implementation introduces only minimal
slowdowns (3-25%) to sequentially executing Java
programs. A similar software-only implementation
would be unacceptable for use in a dynamic
compilation system because it slows execution over
100x during analysis. Total hardware requirements for
implementing TEST are minimal because it utilizes
some of the hardware normally used only for
speculation, and only requires addition of a small
hardware comparator array (< 1% of the total CMP
transistor count) and support for a few additional
processor instructions.
The outline of this paper is as follows: Section 2

describes related work in TLS, dynamic dependence
detection, and dynamic parallelization systems. Section 3
is a brief introduction and overview of the Jrpm system.
We describe the algorithms for analyzing traces and
selecting STLs in Section 4 and provide details of the
TEST hardware implementation in Section 5. In Section 6,
we present results from applying TEST to real programs.
Finally, conclusions are discussed in Section 7.

2. Related Work
The Multiscalar paradigm [11] was the first complete

description and evaluation of an architecture with TLS
support. Several architectures for TLS using CMPs have
been proposed [9][15][20][29]. These implementations

have mostly targeted coarser grains of granularity than the
Multiscalar architecture. Similar to TLS, software-based
dynamic dependence detection has been proposed for
traditional multiprocessor systems to preserve correctness
for loops executed in parallel that may have complex
dependency patterns [12][25][26][28].

There has been some related work on selecting
decompositions for TLS processors. The Multiscalar [32]
compiler focused on compile-time heuristics to increase
intra-procedural task sizes and intra-task dependency
scheduling to increase task parallelism. These
optimizations are sufficient for the smaller threads targeted
by Multiscalar, but do not address the memory
disambiguation and decomposition selection difficulties of
compiling for coarser-grained TLS systems. Trace-driven
simulation was used by Oplinger et al. to study the limits
of TLS [23], and by Steffan and Mowry for manual
selection of loops to be executed speculatively on the
Stampede TLS machine [29]. Neither study specifically
addresses how their technique can be used for automatic
speculative compilation or how their analysis can be
performed without significant simulation overheads.
Chaudhry et al. [6] provide few details about how
decompositions are selected for the MAJC TLS processor
and Cintra et al. [9] restrict speculative decompositions in
their TLS architecture to the inner-most loop of a loop
nest.

There has also been research on improving performance
of STLs once they are selected. These techniques include
hardware synchronization and value prediction schemes to
minimize violations [10][30], and compiler scheduling to
increase distances between inter-thread dependencies
[30][34].

Numerous commercial and research compilers based on
array dependence analysis for parallelizing Fortran
programs have been developed [2][5][14][27]. Several
studies have looked at how these compilers might be
applied to general programs [4][17][24]. The Jrpm system
exploits parallelism exposed to the hardware analyzer with
only a simple scalar compiler. Additional use of an array
data-dependence compiler might further improve parallel
performance of STLs chosen by TEST and uncover hidden
parallelism, but this is beyond our current scope.

There has been other loosely related research that has
used feedback to dynamically parallelize programs. Ko et
al. [18] identified optimal decompositions through brute-
force incremental execution of all possible decompositions
in multi-level parallel programs. There have been
numerous systems designed to tune parallel performance
on traditional multiprocessors [1][13][19], but they have
relied on off-line, rather than real-time, dependency
analysis of memory traces.

3. Java Runtime Parallelizing Machine
(Jrpm)

Hydra CMP

Java VM

Application

TEST profiler TLS support

Native code
+

Annotation
instructions

Native TLS
codeJIT Compiler

Profile analyzer

Java bytecode

CFG / DFG

1

2

3

4

5

1 Identify possible STLs by analyzing bytecodes and compile
natively with annotation instructions.

2 Run annotated program sequentially, collecting TEST
profile statistics on potential STLs.

3 Post-process profile statististics and choose STLs that
provide the best speedups.

4 Recompile code with TLS instructions for selected STLs.

5 Run native TLS code.

Figure 1 – Block diagram of Jrpm.
A block diagram of Jrpm outlining its various software

and hardware components is shown in Figure 1. The
compiler chooses possible STLs by analyzing a program
control-flow graph. A program that has been dynamically
compiled with instructions annotating local variables and
STL boundaries is executed as a sequential program on
one processor of Hydra. The trace hardware analyzes
prospective STLs. The code is dynamically recompiled
into speculative threads on regions that are predicted to
have the largest speedup and most coverage. Section 3.1
and Section 3.2 provide a brief overview of the Hydra
CMP and the microJIT dynamic compiler.

3.1. Hydra CMP with Speculative Thread
Support

Hydra [15][22], shown in Figure 2, consists of four
single-issue pipelined MIPS processors, each with private
L1 data caches, attached to an integrated on-chip L2 cache
with separate read and write buses. Speculative thread
support in our CMP consists of special coprocessor
instructions, extra speculative tag bits added to each line of
the L1 data caches, and a set of secondary cache write
buffers. The coprocessor instructions provide an interface
to the thread speculation control hardware, the tag bits
detect data dependency violations between threads, and the
write buffers hold speculative data until it can be safely
committed to the secondary cache or discarded. The
physical limits of buffered speculative state are given in
Table 1.

Table 1 – Thread-level speculation buffer limits.
Buffer Per-thread limit Associativity
Load buffer 16kB (512 lines x 32B) 4-way
Store buffer 2kB (64 lines x 32B) Fully

Table 2 – Thread-level speculation overheads.

TLS Operation
Overhead
/ delay Additional overheads

Loop startup 25 cycles Initialize loop local variables
Load register-allocated loop
invariants

Loop shutdown 25 cycles Complete sum and min/max
reductions

Loop end-of-iteration 5 cycles Increment loop iterators
Violation and restart 5 cycles Load register-allocated loop

invariants
Store-load
communication

10 cycles

3.2. microJIT Dynamic Compiler
The open-source Kaffe virtual machine

(http://www.kaffe.org/) was chosen for our Java runtime
system. The microJIT compiler [8] was augmented to
generate both annotated code for TEST analysis and
speculative thread code. Once a STL is chosen, the
compiler inserts assembly routines, shown in Table 2, that
start, control, and terminate speculative threads. These
routines introduce some overheads relative to the original
sequential code. The compiler also performs optimizations
and transformations on the selected STLs. Inter-thread
local variable dependencies are globalized and local
variable initializers are communicated to each thread.
Optimizations that improve speculative performance, like
register allocating loop invariants, using non-violating loop
inductors, inserting synchronization locks, and
transforming reduction operations (e.g. sum, min/max), are

applied when possible.
Details on these speculative
compiler optimizations will
be presented in a future
paper.

4. TEST Algorithms
This section describes in-

depth the trace analyses
performed on potential
thread decompositions and
the decision process used to
select thread decompositions
from collected statistics.
Section 5 describes the
hardware and software
support required to support

the trace analyses.

4.1. Identifying Potential Decompositions
Speculative threads can be composed from loops,

method call returns, and general regions [7][15][23]. The
remainder of this paper will focus only on decompositions
formed from loops. Our experiments so far have not found
many method call return or general region decompositions
that are either not covered by similar loop decompositions
or have significant coverage to impact total execution time.

The compiler chooses potential STLs by examining a
method’s control-flow graph to identify all natural loops
[21]. Loops are chosen optimistically, relying instead on
TEST results to identify desirable decompositions. Any
loop without obvious loop-carried dependencies that
would completely eliminate speedup (e.g. end-of-loop
store and start-of-loop load) is considered a potential STL.
Loop inductors [21], which are dependencies that can be
eliminated by the compiler, are ignored so that potentially
parallel loops are not overlooked. Scalar analysis is used
to identify simple dependencies, but we forgo advanced
techniques that require analyzing array access patterns,
control flow, or memory accesses to find dependencies.

4.2. Trace Analyses
This section describes the two trace analyses performed

to characterize the potential of a STL, the load dependency
analysis and the speculative state overflow analysis. TEST
analysis relies on the notion of event timestamps, or the
time when an event occurs. Timestamps from different
events are compared against each other to compute
specific statistics.

L1 ICache
(16kB)

CPU3 CP2

L1 DCache +
Spec tags (16kB)

L1 ICache
(16kB)

CPU2 CP2

L1 DCache +
Spec tags (16kB)

L1 ICache
(16kB)

CPU1 CP2

L1 DCache +
Spec tags (16kB)

TEST

SDRAM
interface

DRAM Main
Memory

I/O bus
interface

I/O DevicesOn-chip L2 cache (2MB)

Write buffers

Comparator banks #0 #1 #2 #3 #4

Write bus (64b)

Read bus (256b)

L1 ICache
(16kB)

CPU0 CP2

L1 DCache +
Spec tags (16kB)

Central bus arbitrator

Figure 2 – Block diagram of our CMP. TLS support blocks shown in dotted lines. TEST
hardware blocks shown in dark blocks.

4.2.1 Load dependency analysis. The load dependency
analysis looks for inter-thread dependencies for a STL, as
illustrated in Figure 3. A store timestamp is recorded on a
memory or local variable store, and retrieved on a
subsequent load to the same address. The store timestamp
is checked against thread start timestamps to determine if
an inter-thread dependency arc exists to the previous
thread (t-1), or an earlier thread (< t-1). If an inter-thread
dependency arc is detected, the arc length, the difference
between the current time and the store timestamp, is
recorded. While many dependency arcs may exist
between any two given speculative threads, we only record
the critical arc (dark arrows in figure), which is the

shortest arc and limits parallelism between the threads.

4.2.2 Speculative state overflow analysis. The
speculative state overflow analysis checks that speculative
state for a STL can fit within the L1 caches and store
buffers. Each L1 data cache line includes additional tag
bits to record a processor’s speculative read state. Each
speculative store buffer, with L1 cache line sized entries,
collects all speculative heap writes made by a processor.
Dropping a L1 cache line with speculative state or
overflowing a store buffer forces a speculatively executing
thread to stall until reads or writes can be performed safely
(when the thread becomes the non-speculative “head”
thread).

Y

N
Y

N
Y

N

(a)

Y
Y
N

N

Y

(e)

1
1
1
0
0
0
1
1
1
0
0

(g)

2
2
2
2
1
0
2
1
1
1
0

(f)

30
40
10

15

5

(c)

“
“
“
“
“

25
“
“
“
“
0

(d)

Y
Y

N

(b)

LD 0x20000
ST 0x10048
ST 0x10040
LD 0x10040
LD 0x20000
New thread
LD 0x20040
LD 0x20008
ST 0x10040
LD 0x20000
New thread

Op

00x00x830
025
00x20x820
00x00x815
00x20x2010
00x00x85
00

00x20x435

00x00x850
00x20x2045
00x20x2040

(h)IndexTagTime

LD
 ti

m
es

ta
m

p
hi

t

(b
its

 3
1:

11
 fo

r S
T)

(b
its

 3
1:

14
 fo

r L
D

)

(b
its

 1
0:

5
fo

r S
T)

(b
its

 1
3:

5
fo

r L
D

)

O
ld

 ti
m

es
ta

m
p

Th
re

ad
 s

ta
rt

 ti
m

e

LD
/S

T
in

 c
ur

re
nt

th
re

ad
?

is
 (c

) >
 (d

) ?

LD
 c

ou
nt

er
++

 o
n

LD
 if

 n
ot

 (a
)

or
 n

ot
 (e

)

ST
 c

ou
nt

er
++

 o
n

S
T

if
no

t (
b)

or
 n

ot
 (e

)

O
ve

rf
lo

w
++

 if
 (f

) >
 L

D
 li

m
it

or
 (g

) >
 S

T
lim

it

ST
 ti

m
es

ta
m

p
hi

t

Figure 4 – Illustration of the speculative state overflow analysis. Thread start time (column d) and counters (columns f & g)

are reset for every new thread. Arrows show conditions that cause counters to be incremented.

// outer loop (selected STL)
do {

n = root;
// inner loop
while (tree[n].left != -1) {

if(in.getBit(in_p) == 0) {
n = tree[n].left;

} else {
n = tree[n].right;

}
in_p++;

}
out[out_p++] = tree[n].char;

} while (in_p < in.size());

start

do {

LD in_p

ST in_p

ST in_p

LD out_p
ST out_p
} while (LD in_p);

end

thread 1

O
rig

in
al

 lo
op

Sp
ec

ul
at

iv
e

th
re

ad
s

start

do {

LD in_p

ST in_p

LD out_p
ST out_p
} while (LD in_p);

end

thread 2

A
cc

um
ul

at
ed

 s
ta

tis
tic

s

start

do {

LD in_p

ST in_p

LD out_p
ST out_p
} while (LD in_p);

end

thread 3

Th
re

ad
 s

iz
e

16 – 8 = 8
26 – 18 = 8

Thread

0# critical arcs to <t-1 / (# threads – 1)Critical arc frequency to earlier thread
0Σ critical arcs lengths to <t-1 / # critical arcsAvg. critical arc length to earlier thread

1.0# critical arcs to t-1 / (# threads – 1)Critical arc frequency to previous thread
8Σ critical arcs lengths to t-1 / # critical arcsAvg. critical arc length to previous thread

3# threads / # entriesAvg. iterations per loop entry

cycles / # threads

Σ critical arc lengths to <t-1
critical arcs to <t-1
Σ critical arc lengths to t-1
critical arcs to t-1
entries
threads
cycles

210Critical arc count to previous thread
1680Accum. critical arc lengths to previous thread
000Critical arc count to earlier thread
000Accum. critical arc lengths to earlier thread

11.6Avg. thread size
Derived values after thread 3Values derived from counters

352313Elapsed time in loop

111Loop entry count
321Thread count

321Counters

20 – 11 = 9 32 – 21 = 11

0

2

4

8

10
11
12

13

time op time op time op
14

16

18

20
21
22

23

24

26

30
31
32
33
34

35

1 Inter-thread (loop-carried)
dependency due to in_p results in
a dependency arc length of 8.

1

2

3

2 Dependency due to out_p results
in a dependency arc of length 9.
The dependency arc length of in_p
is the critical arc because it is
shorter.

3 After many threads have executed,
the accumulated counter values
generate statistics that are used to
predict speculative performance of
this STL.

Figure 3 – Example (Huffman decode) of the load dependency analysis. Analysis is performed on the outer loop in this example.
Loop-carried dependencies are bold in source code. Arrows represent dependency arcs. Critical arcs shown in darker arrows.

An example of the overflow analysis on a set of STL
memory references is shown in Figure 4. The speculative
state overflow analysis relies on timestamps associated
with cache lines. A cache line timestamp and cache line
tag is recorded for the cache line a heap load or store
would have hit. Subsequent memory accesses check for a
previously recorded cache line timestamp with a matching
cache line tag (columns a & b). If no timestamp exists or
if it is less than the current thread start timestamp of a STL
(column e), counters tracking buffer requirements are
incremented to reflect new buffer state required by the
current thread. The load counter (column f) tracks new
speculatively read cache lines, and the store counter
(column g) tracks new store buffer entries. The overflow
counter (column h) is incremented if either counter for the
current thread exceeds buffer limits.

4.3. Selecting Thread Decompositions
The statistics shown in Figure 3 and Figure 4 are

accumulated over time and analyzed to predict the
performance of a STL. The estimated speedup for a STL,
shown in Equation 1, is derived from average critical arc
frequencies, thread sizes, critical arc lengths, overflow
frequencies, and speculative overheads.

Speedup is limited to four in Hydra (or total number of
processors in the CMP). Note that we expect maximal
speedup if the average critical arc length is at least ¾ the
average thread size (or (p-1)/p where p is the number of
processors). This is the point at which the processors are
completely utilized and the inter-thread dependencies are
separated enough not to limit speedup.

There are multiple possible decompositions that can be
chosen in a loop nest. For example, in Figure 3, either the
outer loop or the inner loop can be transformed into
speculative threads, but not both at the same time. We
select the best STL by comparing the estimated execution
time using speculative threads for a STL against the
estimated execution time using speculative threads for any
nested STL decompositions instead, plus any non-
speculative serial execution, as shown in Equation 2.

Table 3 shows how this equation is applied to the
example loop in Figure 3.

∑
=









−•+<>

tsd_nesteds s
stsd_this

tsd_this

tsd_this 1
speedup

1timetime
speedup

time

Equation 2 – Comparison function for choosing an optimal
STLs.

Table 3 – Application of Equation 2 to the loops from

Figure 3 chooses the outer loop as the better STL.

Outer
loop

Inner
loop Serial

Sequential time
(cycles)

18941K 13774K 5167K

Speedup 1.85 1.30 1.00
TLS time (cycles) 10238K 10595K 5167K
Total time (cycles) 10238K < 15762K

5. TEST Hardware Implementation
Simulations indicate program execution slows over

100x when profiling using a software-only implementation
of the trace analyses described in Section 4.2. Overheads
result from callback annotations on every memory and
local variable access, and comparisons required to resolve
inter-thread dependencies and compute speculative state
requirements. This magnitude of slowdown is
unacceptable in a real dynamic compilation system, even if
the analysis is only performed on a limited basis.
Furthermore, the significant software overheads introduce
imprecision into the analysis, making difficult to derive
accurate thread size and dependency arc lengths.

The overheads and imprecision of software-only
analysis led us to consider how hardware support could
speedup profiling and improve accuracy. The hardware
we designed analyzes a sequentially executing program
and works when speculation is disabled. Annotation
instructions inserted by the dynamic compiler (Section 5.1)
into native code mark important events. The annotation
instructions communicate events to the hardware
comparator banks that perform the actual trace analyses
(Section 5.2). The speculative store buffers, which are idle
during sequential non-speculative execution, hold
timestamps of previous events (Section 5.3).

()

time_spec
time_orig speedup

upbase_speed
freq_overflow1 reqoverflow_fthreads#overhead_eoitime_origentries# overhead_shutdown_and_startup spec_time

tanceal_arc_disavg_critic_sizeavg_thread
_sizeavg_thread

4

rc_freqcritical_aupbase_speed
hreadsall_prev_tt

4
3

_sizeavg_thread
tanceal_arc_disavg_critic

t

4
3

_sizeavg_thread
tanceal_arc_disavg_critic

t

t

t

=








 −
+••++•=































−

•= ∑
=

<=

>

Equation 1 – Estimated speedup for a STL.

5.1. Annotating Instructions
The annotating instructions, shown in Table 4 and

Figure 5, mark events relevant to the trace analyses
described in Section 4.2. Memory load and store events
are automatically communicated to the tracing hardware
when tracing is enabled. sloop, eloop, and eoi
instructions mark the entry, exit and end-of-iteration of a
potential STL. Local variables in the same calling context
as a potential STL are tracked with explicit annotations to
simplify tracking of named variables that move between
registers and the runtime stack in optimized compiled
code. Block-local and temporary variables are not
annotated because they never cause a dependency. At the

end of a STL (e.g. exit from a loop),
special routines read the collected
statistics from TEST.

Program execution slowdown
results from local variable
annotations and overheads to read
collected statistics at the end of a
STL, as shown in Figure 6. Several
optimizations were performed by
the JIT compiler to reduce
slowdowns of the annotated native
code. Only the first local variable
load in a block or a loop is
annotated since it would result in
the shortest dependency arc, if one
existed. Within loop nests, calls to
read collected statistics at the end of
a STL are hoisted to the outer-most
loop when there is only one loop at
each level. After performing these
optimizations, most benchmarks

experience no more than 10% slowdown, and only 2
applications have slowdowns approaching 25%.

5.2. Comparator Array
The comparator banks carry out the bulk of the

dependency and overflow trace analyses. One comparator
bank, shown in Figure 7, tracks the progress for a given
STL. Each bank, primarily composed of comparators and
counters, analyzes incoming loads and stores. An array of
comparator banks allows us to trace multiple potential
STLs executing concurrently, as would be the case when
analyzing nested loops. Comparators are used to compare
thread start timestamps against incoming cache line
timestamps to check for speculative state overflows and
against store timestamps to identify critical arcs. At the
end of each thread of a STL, arc lengths, critical arc
counts, and buffer overflows are accumulated into
counters.

In a real implementation of TEST with multiple banks,
logic in the critical arc calculation block can be shared
between banks. A given load access can be a dependency
for only one STL. For example, in a nested loop, a load
dependency may exist to a previous iteration in the current
loop or iteration in an enclosing loop, but not to both.
Consequentially, only one critical arc calculation block in
an array of comparator banks will be active for a given
load access. To share this block, the critical arc
calculation block is pipelined after dependency arc
identification, as shown in Figure 8a.

Multiple comparator banks are assigned in loop nests
when multiple potential STLs execute concurrently. The
finite number of comparator banks restricts the number of
loops in a loop nest that can be analyzed concurrently.
Several mechanisms help ensure the banks are still applied

Table 4. Summary of annotating instructions and associated operations.
Instruction Description Normal

operation
Trace operation (when enabled)

lw|lb|lbu|lh
lhu|lwc1 addr

Load

Load Get memory access store timestamp and cache
line timestamp
Record memory access cache line timestamp

sw|sb|sh|
swc1 addr

Store

Store Get previous cache line timestamp
Record memory access store timestamp and
cache line timestamp

lwl vn Local
variable load

none Get store timestamp for local variable vn

swl vn Local
variable store

“ Record store timestamp for local variable vn

sloop n Start loop “ Allocate comparator bank
Increment current bank pointer
Set current thread start timestamp
Reserve n local variable store timestamps

eoi Loop end-of-
iteration

“ Shift thread start timestamps for current bank
Set current thread start timestamp for current
bank

eloop n End loop “ Free comparator bank
Decrement current bank pointer
Free n local variable store timestamps

li $s1, 10
sloop 1

loop_top:
lwl 1
blez $s1, loop_exit
jal call
bnez $v0, if_fail
lwl 1
addi $s1, $s1, -1
swl 1
b loop_eoi

if_fail:
lw $t0, 8($s0)
addi $t0, $t0, 1
sw $t0, 8($s0)

loop_eoi:
eoi
b loop_top

loop_exit:
eloop 1
jal read_statistics

1 Mark start of loop and allocate 1
local variable timestamp slot for
lcl_v.

4

Instrumented machine code

int lcl_v = 10;
while(lcl_v > 0){

if(call() != 0){
lcl_v--;

}
else{

this.val++;
}

}

Original loop

1

4 Mark end of loop and free local
variable timestamp. Jump to
routine to read collected
statistics.

2

2 Local variable annotations mark
accesses to lcl_v.

3 lw and sw automatically
communicated to profiler.

3

Figure 5 – A sample loop compiled with annotating

instructions.

effectively. Precedence is initially given to the outer-most
loop, and analysis of deeply nested loops is disabled when
there are no comparator banks left or no room left for local
variable timestamps (see sloop and eloop in Table 4).
When a comparator bank consistently predicts speculative
buffer overflows for an outer STL, it can be freed to be
used deeper in a loop nest. When sufficient data has been

collected to predict behavior for a
STL, the annotations marking it
can be disabled dynamically (e.g.
overwriting JIT compiled code
with nop instructions). This
ensures the system can eventually
collect information on
decompositions deep within a
loop nest.

Pipelining access to the
critical arc calculation block also
enables TEST to provide detailed
dependency information that can
be used for optimization. In an
extended implementation of
TEST, the registers and counters
in the critical arc calculation
block are replaced with accesses
to content addressable SRAM, as

shown in Figure 8b. This configuration allows critical arc
lengths, accumulated critical arc lengths, and critical arc
counts to be binned by the load instruction PC to be later
analyzed by a programmer or compiler.

We estimated how much logic would be consumed by
an implementation of TEST. Transistor counts were

Cache line
timestamps

(2kB, direct map)

Local var store
timestamps

(2kB, 64 lines)

Memory store timestamps
(6kB, 192 line FIFO)

>?
register

Comparator: (bottom) = (top) > (right) ?

Register: load (top) if (right); (bottom) = current value

Counter: add +1 if (left); reset to 0 if (right); bottom =
current value

ALU: (bottom) = (top1) + (top2)

>?

La
st

 li
ne

 L
D

thread start timestamp (t)La
st

 li
ne

 S
T

counter

loaded cache lines

overflows

thread start timestamp (t)

thread start timestamp (t-1)

>?

>?
critical arc length (<t-1) critical arc length (t-1)

>?

> >?

>

>0

max # load
lines

max #
store lines

stored cache lines

>?

>0

thread start timestamp (0)

critical arcs (<t-1)

accum. arc length (<t-1)

critical arcs (t-1)

accum. arc length (t-1)

B
uf

fe
r o

ve
rf

lo
w

de

te
ct

io
n

C
rit

ic
al

 a
rc

 c
al

cu
la

tio
n

D
ep

en
de

nc
y

ar
c

id
en

tif
ic

at
io

n

Last ST timestamp

Speculation store buffers

Start new thread
Enter STL

LD access time
ST access time

One (of multiple) STL comparator banks

Key

In
de

x
by

 a
dd

re
ss

-

threads

>?

1 Event timestamps are held in store buffers
for later retrieval.

1

2

3

4

5

2 This logic examines cache line timestamps
for buffer overflows (Section 4.2.2).

3 Store timestamps are compared against
thread start timestamps to identify a
dependency arc (Section 4.2.1).

4 Determines if a dependency arc is a critical
arc (Section 4.2.1).

5 Reset appropriate counters on STL entries
and on new threads

Figure 7 – Block diagram of one comparator bank.

0%

25%

50%

75%
As

sig
nm

en
t

Bit
Op

s

co
mp

re
ss db

de
lta

Blu
e

Em
Flo

at
Pn

t

Hu
ffm

an

ID
EA jes

s

jLe
x

Mi
ps

Sim
ula

to
r

Nu
mH

ea
pS

or
t

mo
nt

eC
ar

lo

ra
yt

ra
ce

eu
ler fft

Fo
ur

ier
Te

st

Lu
Fa

cto
r

mo
ldy

n

Ne
ur

alN
et

sh
all

ow

de
cJp

eg

en
cJp

eg

h2
63

de
c

mp
eg

Vid mp
3

Integer Floating point MultimediaBenchmark

Sl
ow

do
w

n

Read Counters Locals Annotations

Figure 6 – Execution slowdown during profiling of benchmarks. For each application,
the 1st column is base annotations and the 2nd column is optimized annotations.

derived from the logic required for a implementation with
eight comparators eight. As Table 5 suggests, TEST
hardware would add less than 1% to the transistor count of
the Hydra CMP with TLS support.

5.3. Store Buffers
The five store buffers (see [15] for an explanation of

why there are five) that normally hold writes during
speculative execution hold timestamps during profiling.
Each store buffer is 2KB (64 32B cache lines). The store
buffers are statically partitioned, with three buffers holding
heap access store timestamps, one holding cache line
timestamps, and one holding store timestamps to local
variables. An address’ timestamp is returned when
requested by an annotating memory or local variable
instruction.

Store timestamps in the store buffers, organized as
FIFO (first-in, first-out) during tracing, effectively hold a
limited history of memory and local variable accesses. For
heap access store timestamps, 192 cache lines, or 6KB, of
write history can be held.

To keep logic additions for the speculative state
overflow analysis simple, the lower bits of an address
index the store buffer holding cache line timestamps and
cache line tags like a direct mapped cache. The actual
speculation store buffers are fully associative and the L1
caches are 4-way set associative. Not accounting for
associativity introduces some error into the overflow
analysis, but should not affect its usefulness in estimating
speculative state requirements.

6. Benchmark Analysis

6.1. Benchmark Results
Table 6 lists benchmarks we have evaluated using

TEST, including applications from the jBYTEmark
(http://www.byte.com/), SPECjvm98
(http://www.specbench.org/), and Java Grande

(http://www.epcc.ed.ac.uk/javagrande/javag.html)
benchmarks suites. The columns on the right of this graph
summarize the characteristics of the STLs chosen by
TEST. Figure 10 shows graphically the coverage and
expected speedups of selected STLs.

Overall, the selected STLs exhibit significant thread
size (column h) and coverage diversity. MipsSimulator,
raytrace, IDEA, EmFloatPnt and FourierTest have very
coarse threads while moldyn and NeuralNet have very
fine-grained threads. Ignoring inter-thread dependencies,
analysis of the selected STLs suggest that the thread size
is primarily constrained by the limited store buffer size
rather than the speculative load state in the L1 cache lines.

While many programs have critical sections,
Assignment, NeuralNet, euler and mp3 have many STLs
that contribute equally to total execution time. Several
programs have more selected STLs (column e) than shown
in the table, but the omitted decompositions do not have
any significant coverage (< 0.5%). mp3, db, jess, and jLex
have significant sections of serial execution not covered by
any potential STLs, limiting total speedup for these
applications.

The larger programs contain significant numbers of
loops (column c) that would have made manual
identification of STLs a time consuming task. A visual
analysis of the source code identified that less than a third
of the benchmarks can be analyzed by a traditional
parallelizing compiler (column a) (e.g. programs that
resemble Fortran floating point code w/ affine array
accesses, no dynamic objects/pointers, bounded loops, and
little control flow). The average height of selected loops
from the inner loop (column f) suggests that desired STLs
have granularities larger than the inner-most loop in a loop
nest. The maximum depth of loop nests executed (column
d) indicates that eight comparator banks are sufficient to
analyze most of the benchmark programs without
intervention from the runtime system.

Apart from simplifying parallelization of floating point
programs for a CMP and automatically selecting STLs in
integer applications that are difficult to analyze statically,
our experiments suggests that dynamic parallelization has
other potential benefits. One advantage is that STL
selections can be made that account for input data set sizes.
We noticed several applications where selected
decompositions can change according to input data sizes
(column b). In these benchmarks, multiple levels of
parallelism exist in key loops. Assignment, NeuralNet,
LUFactor, euler, and shallow use a nested loop to traverse

Store buffer
access

CAM/SRAM
read

Critical arc
calculation

CAM/SRAM
write

Buffer overflow
detection

Load dependency
analysis

Store buffer
access

~1 ~2 ~3 ~4 ~5Cycle

Speculative state
overflow analysis

Store buffer
access

Dependency arc
identification

Critical arc
calculation

Load dependency
analysis

Store buffer
access

~1 ~2 ~3Cycle

Speculative state
overflow analysis

Incoming
LD/ST

(a)

(b)

Incoming
LD/ST

Buffer overflow
detection

Dependency arc
identification

Figure 8 – Comparator bank (a) base pipeline design (b) extended

pipeline design.

Table 5 – Transistor count estimates Hydra with TLS and TEST

support.
 Transistors
Structure Count Each Total % of

total
CPU + FP core 4 2500K 10000K 8.64%
16kB I / 16kB D Cache 4 1573K 6291K 5.43%
2MB L2 cache 1 98304K 98304K 84.91%
Write buffer 5 172K 861K 0.74%
Comparator bank 8 39K 322K 0.28%
Total 115778K 100.00%

2-dimensional data arrays. For these programs, loops
lower in a loop nest must be chosen with larger data sets
because the number of inner loop iterations will rise,
increasing the probability of overflowing speculative state
when speculating higher in a loop nest. Choosing STLs
dynamically also allows selected STLs to change as CMP
designs evolve. For example, larger STLs that would
cause speculative buffer overflows in our current system
could be chosen during runtime by a future Hydra design
with larger speculative store buffers and L1 caches.

6.2. Imprecision Effects
Each benchmark was run speculatively on Hydra using

the STLs selected by TEST. Figure 11 shows our analysis
does a good job of predicting speculative performance. A
comparison of speculative performance and results from
TEST suggests disparity results mostly from selected STLs
with highly varying thread sizes and large violation rates
during actual speculative execution. One should keep in
mind, though, that relative speedup estimates to other
potential STLs are more important. The primarily role of
TEST is to identify the best STLs, so absolute values are
not critical.

Precision is lost
during the accumulation
and binning of thread
statistics. With our
algorithm, temporal
dependency information
is lost that could detect

multi-iteration
parallelism, as illustrated
in Figure 9. In non-
constant sized loops or
in loops where work
increases or decreases
monotonically by
iteration, accumulating
statistics for a STL
averages thread sizes
and dependency arc
lengths, hiding per-
thread variance or linear
changes in these values.
Finally, the limited
history of heap access
store timestamps and
collecting dependency
statistics in only two
bins (t-1 and < t-1) limit
the analysis’ accuracy
on distant thread
dependencies.

 for(i=0; i < limit; i++){
 if(i % n != 0){
 A[i] = A[i-1];
 }
 }
Figure 9 –TEST analysis may incorrectly conclude this loop
to be non-parallel. Parallelism exists at every nth iteration,

but the count of dependencies to the previous iteration is
high.

In practice, the lost precision does not appear to
decrease TEST’s ability to identify good STLs. Parallel
loops with complex dependencies that might fool TEST
analysis were not found in any critical regions of the
benchmark programs. While many of the benchmarks,
particularly the integer programs (e.g. MipsSimulator,
Huffman, db and NumHeapSort), exhibit STLs with highly
varying thread sizes and dependency arc lengths, this did
not affect our ability to identify the best decomposition.
The accuracy of distant thread dependencies was also not
critical. For floating point applications, parallelism existed
at many levels and granularities, and selected
decompositions were mostly limited by speculative buffer
limits. In integer applications, we found that available

Table 6 – Benchmarks evaluated with STLs selected by TEST.
Characteristics TEST Analysis
(a) (b) (c) (d) (e) (f) (g) (h)

C
at

eg
or

y

Benchmark Description D
at

a
se

t

A
na

ly
za

bl
e

fo
r

pa
ra

lle
lis

m

D
at

a
se

t s
en

si
tiv

e

L
oo

p
co

un
t

L
oo

p
de

pt
h

Se
le

ct
ed

 lo
op

s (
>0

.5
%

co

ve
ra

ge
)

A
vg

. s
el

ec
te

d
lo

op

he
ig

ht

T
hr

ea
ds

 /
ST

L
 e

nt
ry

T
hr

ea
d

si
ze

 (c
yc

le
s)

Integer
 Assignment Resource allocation 51x51 N Y 32 5 11 2.0 29 199
 BitOps Bit array operations N N 4 2 2 1.0 7646 29
 compress Compression N N 28 4 4 1.8 93755 546
 db Database 5000. N Y 37 5 6 1.7 23142 510
 deltaBlue Constraint solver N N 22 4 5 2.6 82 501
 EmFloatPnt FP emulation N N 7 3 1 2.0 255 20127
 Huffman Compression N N 14 3 6 1.3 502 108
 IDEA Encryption Y N 2 2 1 2.0 242 6307
 jess Expert system N N 134 11 4 5.3 166 339
 jLex Lexical analyzer gen N N 128 6 7 3.0 71 2699
 MipsSimulator CPU simulator N N 19 4 2 3.5 51931 1313
 monteCarlo Monte carlo sim N N 15 3 5 1.4 942 119
 NumHeapSort Heap sort N N 5 3 2 2.0 6081 555
 raytrace Raytracer N N 14 4 1 1.0 65 158
Floating point
 euler Fluid dynamics 33x9 Y Y 32 2 13 1.1 66 304
 fft Fast fourier transform 1024. Y Y 5 3 2 2.0 187 231
 FourierTest Fourier coefficients Y N 2 2 1 2.0 100 167802
 LuFactor LU factorization 101x101 Y Y 13 3 7 1.6 64 455
 moldyn Molecular dynamics Y N 8 2 1 1.0 1026 96
 NeuralNet Neural net 35x8x8 Y Y 19 4 8 1.9 9 617
 shallow Shallow water sim 256x256 Y Y 11 3 3 1.0 257 1420
Multimedia
 decJpeg Image decoder N N 61 5 21 2.2 34 124
 encJpeg Image compression N N 62 8 9 1.6 54 121
 h263dec Video decoder N N 54 5 3 3.0 165 212
 mpegVideo Video decoder N N 69 8 9 1.4 23 701
 mp3 mp3 decoder N N 98 6 17 2.3 55 181

parallelism was mostly determined by dependency
behavior to recent, not distant, past threads.

6.3. Guiding Optimization
TEST generates statistics that aid compiler optimization

of selected STLs. The extended implementation of TEST
can bin STL dependencies according to the load PC (and
consequently, to specific program regions and variables).
Dependency critical arc lengths relative to the thread size
can also be collected. For frequently occurring critical
arcs significantly less than the size of the loop, these
statistics direct the compiler to variables where optimized
placement of loads and stores can extend critical arcs
[30][10] or where synchronization can be inserted to
minimize violations [22].

These statistics are also invaluable for speculative
programmer optimizations
beyond that which can be
uncovered by compiler
analysis or can be performed
safely by automatic
transformations. Feedback
from our simulations of TEST
has helped identify false
dependencies and aided the
optimization of several
benchmarks, specifically
NumericSort, Huffman, db,
and MipsSimulator. In these
applications, the statistics
quickly identified one or two
critical dependencies that
could be restructured or
removed to expose parallelism
to the speculation hardware.

7. Conclusions
This paper describes Tracer for Extracting Speculative

Threads (TEST), a hardware tracer that analyzes potential
speculative-thread loops (STLs) in running Java
applications. The proposed hardware requires minor
additions to our CMP with speculation support and incurs
only moderate slowdown of a program during analysis.
The results show that the proposed hardware can select
decompositions that maximize speedup and parallel
coverage without exceeding speculative buffer limits. The
Java runtime system can then dynamically recompile
selected decompositions into speculative threads.

Using this approach, we can identify speculative
parallelism dynamically in integer and floating-point
applications. A traditional parallelizing compiler would be

0.00

0.25

0.50

0.75

1.00

1.25

As
sig

nm
en

t

Bit
Op

s

co
mp

re
ss db

de
lta

blu
e

Em
Flo

at
Pn

t

Hu
ffm

an

ID
EA jes

s

jle
x

Mi
ps

Sim
ula

to
r

mo
nt

eC
ar

lo

Nu
mH

ea
pS

or
t

ra
yt

ra
ce

eu
ler fft

Fo
ur

ier
Te

st

Lu
Fa

cto
r

mo
ldy

n

Ne
ur

alN
et

sh
all

ow

de
cJp

eg

en
cJp

eg

h2
63

de
c

mp
eg

Vid
eo mp
3

Integer Floating point Multimedia
B enchmark

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Predicted Actual

Figure 11 – Estimated speedup versus actual speedup.

0.00

0.25

0.50

0.75

1.00

As
sig

nm
en

t O P

Bit
Op

s O P

co
mp

re
ss

 O P

db
 O P

de
lta

Blu
e O

P

Em
Flo

at
Pn

t O P

Hu
ffm

an
 O P

ID
EA

 O P

jes
s O P

jLe
x O

P

Mi
ps

Sim
ula

to
r P

mo
nt

eC
ar

lo
O P

Nu
mH

ea
pS

or
t P

ra
yt

ra
ce

 O P

eu
ler

 O P

fft
 O P

Fo
ur

ier
Te

st
 O P

Lu
Fa

cto
r O P

mo
ldy

n O
P

Ne
ur

alN
et

 U P

sh
all

ow
 O P

de
cJp

eg
 O P

en
cJp

eg
 O P

h2
63

de
c O P

mp
eg

Vid
eo

 O P

mp
3 O

P

Integer Floating point MultimediaBenchmark

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Figure 10 – Graphical representation of selected STLs. The 1st column (O) is sequential execution and the 2nd column (P) is
predicted speculative execution. Each block in a column represents one STL and its contribution to execution time. The

bottom dark block represents non-parallelizable serial execution (if any).

challenged because of the difficulty of analyzing integer
programs statically, and profiling techniques without
hardware support would execute too slowly for run-time
analysis. Our experiences with the analyzer also suggest it
can enhance compilation by providing statistics to guide
speculative optimizations and by producing feedback to
aid programmers with optimizations that cannot be
performed automatically.

8. Acknowledgements
This work was supported by DARPA Air Force

Contract F29601-01-2-0085.

9. References
[1] Adve, V. S. et al. An integrated compilation and performance

analysis environment for data parallel programs. In SC‘95, San
Diego, CA, November 1995.

[2] Adve, V. S. et al. High Performance Fortran Compilation
Techniques for Parallelizing Scientific Codes. In Supercomputing
‘98. November 1998.

[3] Allen, R and Kennedy, K. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan Kaufmann,
San Francisco, CA, 2001.

[4] Artigas, P. et al. Automatic Loop Transformations and
Parallelization for Java. In ICS’2000, Santa Fe, NM, May 2000.

[5] Blume, W. et al. Polaris: Improving the Effectiveness of
Parallelizing Compilers. In 7th Workshop on Languages and
Compilers for Parallel Computing. Ithaca, NY, August 1994.

[6] Chaudhry et al. Space-Time Dimensional Computing for Java
Programs on the MAJC Architecture. In Java Microarchitectures,
Kluwer Academic Publishers, Boston, MA, April 2002.

[7] Chen, M. and Olukotun, K. Exploiting Method-level Parallelism in
Single-threaded Java Programs. In PACT’98, Paris, France,
October 1998.

[8] Chen, M. and Olukotun, K. Targeting Dynamic Compilation for
Embedded Environments. In JVM’02, San Francisco, CA, August
2002.

[9] Cintra, M., Martinez, J. F., and Torrellas, J. Architectural Support
for Scalable Speculative Parallelization in Shared-Memory
Multiprocessors. In ISCA 27, Vancouver, BC, June 2000.

[10] Cintra, M. and Torrellas, J. Eliminating Squashes Through
Learning Cross-Thread Violations in Speculative Parallelization for
Multiprocessors. In HPCA 2002, Anaheim, CA, February 2002.

[11] Gopal, S. et al. Speculative Versioning Cache. In HPCA-4, Las
Vegas, NV, February 1998.

[12] Gupta, M and Nim, R. Techniques for Speculative Run-Time
Parallelization of Loops. In SC’98, November 1998.

[13] Hall, M. W. et al. Experiences using the ParaScope Editor: an
interactive parallel programming tool. In PpoPP’93, pages 33-43,
May 1993.

[14] Hall, M. W. et al. Maximizing Multiprocessor Performance with
the SUIF Compiler. In IEEE Compuer, December 1996.

[15] Hammond, L., Willey, M., and Olukotun, K. Data Speculation
Support for a Chip Multiprocessor. In ASPLOS’98, San Jose, CA,
October 1998.

[16] Jouppi, N. P. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In
ISCA-17, pp. 364-373, Seattle, WA, June 1990.

[17] Knobe, K. and Sarkar, V. Array SSA form and its use in
Parallelization. In POPL’98, San Diego, CA, January 1998.

[18] Ko, W. et al. Effective Cross-Platform, Multilevel Parallelism via
Dynamic Adaptive Execution. In 7th Workshop on High-Level
Parallel Programming Models and Supportive Environments. Ft.
Lauderdale, FL, April 2002.

[19] Liao, S. W. et al. SUIF Explorer: An Interactive and
Interprocedural Parallelizer. In PPOPP’99, Atlanta, GA, May 1999.

[20] Marcuello, P. and Gonzalez, A. Clustered Speculative
Multithreaded Processors. In ICS’99, Rhodes, Greece, June 1999.

[21] Muchnick, S. Advanced Compiler Design Implementation. Morgan
Kaufmann Publishers, San Francisco, CA, 1997.

[22] Olukotun, K., Hammond, L. and Willey, M. Improving the
Performance of Speculatively Parallel Applications on the Hydra
CMP. In ICS’99, Rhodes, Greece, June 1999.

[23] Oplinger, J. T., Heiner, D. L., and Lam, M. S. In Search of
Speculative Thread-Level Parallelism. In PACT’99, Newport
Beach, CA, October 1999.

[24] Wu, P. and Padua, D. Containers on the Parallelization of General-
purpose Java Programs. In PACT’99, Newport Beach, CA, October
1999.

[25] Rauchwerger, L. and Padua, D. The LRPD Test: Speculative Run-
Time Parallelization of Loops with Privatization and Reduction
Parallelization. In SIGPLAN’95, La Jolla, CA, 1995.

[26] Saltz, J., Mirchandaney, R., and Crowley, K. Runtime
parallelization and scheduling of loops. In IEEE Transaction on
Computers, 40(5):603-612, May 1991.

[27] Sarkar, Vivek. The PTRAN Parallel Programming System. In
Parallel Functional Programming Languages and Compilers, ACM
Press Frontier Series, pages 309-391, 1991.

[28] So, B., Moon, S., and Hall, M. W. Measuring the Effectiveness of
Automatic Parallelization in SUIF. In ICS’98, Melbourne,
Australia, July, 1998.

[29] Steffan, J. G. et al. A Scalable Approach to Thread-Level
Speculation. In ISCA-27, Vancouver, BC, June 2000.

[30] Steffan, J. G. et al. Improving Value Communication for Thread-
Level Speculation. In HPCA’02, Cambridge, MA, February 2-6,
2002.

[31] Tremblay, M. MAJC: Microprocessor Architecture for Java
Computing. In HotChips’99, Stanford, CA, August 1999.

[32] Vijaykumar, T. N. and Sohi, G. S. Task Selection for a Multiscalar
Processor. In MICRO’98, Chicago, IL, August 10-13, 1998.

[33] Wolfe, M. J. High Performance Compilers for Parallel Computing.
Addison-Wesley, Redwood City, CA, 1996.

[34] Zhai, A. et al. Compiler Optimization of Scalar Value
Communication Between Speculative Threads. In ASPLOS’02,
San Jose, CA, October, 2002.

