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Abstract 
Thread-level speculation (TLS) allows sequential 

programs to be arbitrarily decomposed into threads that 
can be safely executed in parallel.  A key challenge for 
TLS processors is choosing thread decompositions that 
speedup the program.  Current techniques for identifying 
decompositions have practical limitations in real systems.  
Traditional parallelizing compilers do not work effectively 
on most integer programs, and software profiling slows 
down program execution too much for real-time analysis. 

Tracer for Extracting Speculative Threads (TEST) is 
hardware support that analyzes sequential program 
execution to estimate performance of possible thread 
decompositions.  This hardware is used in a dynamic 
parallelization system that automatically transforms 
unmodified, sequential Java programs to run on TLS 
processors.  In this system, the best thread decompositions 
found by TEST are dynamically recompiled to run 
speculatively.  This paper describes the analysis performed 
by TEST and presents simulation results demonstrating its 
effectiveness on real programs.  Estimates are also 
provided that show the tracer requires minimal hardware 
additions to our speculative chip-multiprocessor (< 1% of 
the total transistor count) and causes only minor 
slowdowns to programs during analysis (3-25%). 

1. Introduction 
Modern compilers that perform array datra-dependence 

analysis can automatically parallelize Fortran-like 
numerical applications on traditional multiprocessors 
[2][5][14][27].  Unfortunately, numerous challenges have 
made automatic compiler parallelization of general integer 
programs difficult.   Analyzing pointer aliasing, control 
flow, irregular array accesses, and dynamic loop limits as 
well as handling inter-procedural analysis complicate static 
dependence analysis [3][21].  These difficulties introduce 
imprecision into dependence relations, limit the accuracy 
of parallelism estimates, and force conservative 
synchronization to safely handle potential dependencies 
when running on a traditional multiprocessor. 

Thread-level speculation (TLS) is a technique that 
enables parallel execution of sequential applications on 
tightly coupled multiprocessors without explicit 

synchronization.  With TLS, a sequential program can be 
decomposed into threads to be run on the processors 
without regard to memory dependencies.  The threads are 
sequenced in the order in which they would execute 
sequentially, but are actually executed in parallel.  Data 
speculation hardware support ensures that true 
dependencies between memory accesses are honored 
across threads by backing up and restarting threads that 
execute an inter-thread dependent load too early. 

We have designed Hydra, a chip multiprocessor (CMP) 
with thread speculation support [15].  The granularity of 
speculative threads targeted by Hydra ranges from 10s to 
1000s of instructions.  We would like decompositions to 
be chosen automatically because such fine-grained threads 
are impractical to manually identify in large programs and 
are smaller than threads that should be explicitly coded by 
a programmer.   

A CMP with speculation support allows us to approach 
automatic parallelization differently.  Chip multiprocessors 
combine several CPUs onto one die with a tightly coupled 
memory interface.  The high-bandwidth, low latency 
interconnect and small number of processors (four) in 
Hydra reduces the importance of parallelizing compiler 
optimizations like blocking and loop reordering that 
minimize inter-processor communication in traditional 
multiprocessors.  Potential write-after-read (WAR) and 
write-after-write (WAW) hazards, which must be 
identified and correctly ordered by the compiler in 
traditional multiprocessors, are automatically handled by 
the speculation hardware and never exact performance 
penalties. 

TLS simplifies many automatic parallelization 
challenges, but there are significant constraints that must 
be considered.  On Hydra, the major constraints are: 
• True inter-thread data dependencies, or read-after-write 

(RAW) hazards, always limit speedup from parallel 
execution of speculative threads. 

• Speculative read and write state that is buffered by the 
hardware may overflow for large, long-running 
speculative threads, forcing speculative execution to 
stall until a load or store can be performed safely.   

• Only one thread decomposition may be active (e.g. one 
loop in a loop nest) at a given time. 

• Compiled speculative thread code introduces sequential 
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overheads [22][29] from speculative thread 
management routines and forced communication of 
inter-thread dependent local variables. 
These constraints impose conflicting requirements 

when selecting thread decompositions.  While threads can 
be composed in many ways [23][7][15], most research has 
focused on decompositions based on loops because 
experimentally, they have yielded the most performance 
gains.  A speculative thread loop (STL) is a loop 
decomposed into threads where one loop iteration is one 
thread.  Applying the constraints to these decompositions, 
speculating on small loops limits parallel coverage and 
suffers from higher speculative thread overheads relative 
to work performed.  Speculating on large loops increases 
the probability of speculation buffer overflows and may 
incur higher dependency violation penalties.   

Previous studies of TLS processors have relied on 
simulation and profiling to identify appropriate STLs 
[23][29].  In these studies, cycle-accurate CPU simulators 
with dependence analysis of executing memory references 
were used to deduce performance estimates of potential 
STLs.  These results were used to select the best STLs for 
actual speculative execution.  This type of dynamic 
analysis is computationally expensive, slowing execution 
over 100x during analysis, but is effective and bypasses 
the difficulties of static compiler analysis.   

Dynamic analysis to identify STLs complements a TLS 
processor’s ability to parallelize optimistically and use 
hardware to guarantee correctness.  The primary goal is to 
identify where parallelism usually exists.  As stated earlier, 
integer program characteristics force dependency analysis 
using static compilers to be conservative and imprecise, 
making it difficult deduce program parallelism.  These 
characteristics also make it difficult to statically estimate 
thread size and buffer requirements essential to predicting 
speculative performance.  Profiling, on the other hand, can 
provide accurate statistics on dynamic dependency 
behavior, thread size, and buffer requirements for most 
types of programs. 

In this paper, we present Tracer for Extracting 
Speculative Threads (TEST), hardware support in Hydra 
for low-overhead profiling of potential STLs.  Along with 
a Java virtual machine (JVM), Hydra with TEST and TLS 
support are used together to create the Java Runtime 
Parallelizing Machine (Jrpm), a complete system that uses 
speculative threads to dynamically parallelize sequential 
Java programs. 

Virtual machines (VMs) like the JVM and Microsoft’s 
Rotor (for C#) have become commercially popular in 
recent years as a way of supporting applications without 
being tied to a specific operating system or processor 
architecture.  Our system demonstrates how this 
virtualization can be used in a novel way to seamlessly 
support new execution models without modifying existing 
platform independent program sources.  Key to making 

this work is the VM’s platform-independent bytecode 
representation and dynamic recompilation support. 

In the Jrpm system, the compiler derives a control-flow 
graph from program bytecodes and analyzes it to identify 
potential STLs.  A program that has been dynamically 
compiled with instructions annotating local variables and 
STL boundaries is executed as a sequential program on a 
single processor of Hydra.  The trace hardware collects 
statistics for the prospective STLs.  The JVM takes results 
from TEST analysis to identify the best code sub-sections 
to dynamically recompile into speculative threads.  By 
relying on dynamic execution profiles collected by TEST, 
a simple scalar compiler is all that is required to generate 
the speculative threads. 

The contributions of this paper are: 
• We show how potential STLs are selected from Java 

programs and describe a simple trace algorithm to 
select optimal decompositions quickly.  The analysis 
extracts speculative thread coverage, data dependence 
timing, and speculative state requirements from 
potential STLs, and identifies the best decompositions 
by comparing the collected statistics.  The analysis also 
generates dependency profiles for directing compiler 
optimizations and performance tuning by a 
programmer to improve speculative thread 
performance. 

• We describe the hardware and software for 
implementing the trace algorithm on Hydra.  During 
analysis, this implementation introduces only minimal 
slowdowns (3-25%) to sequentially executing Java 
programs.  A similar software-only implementation 
would be unacceptable for use in a dynamic 
compilation system because it slows execution over 
100x during analysis.  Total hardware requirements for 
implementing TEST are minimal because it utilizes 
some of the hardware normally used only for 
speculation, and only requires addition of a small 
hardware comparator array (< 1% of the total CMP 
transistor count) and support for a few additional 
processor instructions. 
The outline of this paper is as follows:  Section 2 

describes related work in TLS, dynamic dependence 
detection, and dynamic parallelization systems.  Section 3 
is a brief introduction and overview of the Jrpm system.  
We describe the algorithms for analyzing traces and 
selecting STLs in Section 4 and provide details of the 
TEST hardware implementation in Section 5.  In Section 6, 
we present results from applying TEST to real programs.  
Finally, conclusions are discussed in Section 7. 

2. Related Work 
The Multiscalar paradigm [11] was the first complete 

description and evaluation of an architecture with TLS 
support.  Several architectures for TLS using CMPs have 
been proposed [9][15][20][29].  These implementations 



 

have mostly targeted coarser grains of granularity than the 
Multiscalar architecture.  Similar to TLS, software-based 
dynamic dependence detection has been proposed for 
traditional multiprocessor systems to preserve correctness 
for loops executed in parallel that may have complex 
dependency patterns [12][25][26][28]. 

There has been some related work on selecting 
decompositions for TLS processors.  The Multiscalar [32] 
compiler focused on compile-time heuristics to increase 
intra-procedural task sizes and intra-task dependency 
scheduling to increase task parallelism.  These 
optimizations are sufficient for the smaller threads targeted 
by Multiscalar, but do not address the memory 
disambiguation and decomposition selection difficulties of 
compiling for coarser-grained TLS systems.  Trace-driven 
simulation was used by Oplinger et al. to study the limits 
of TLS [23], and by Steffan and Mowry for manual 
selection of loops to be executed speculatively on the 
Stampede TLS machine [29].  Neither study specifically 
addresses how their technique can be used for automatic 
speculative compilation or how their analysis can be 
performed without significant simulation overheads.  
Chaudhry et al. [6] provide few details about how 
decompositions are selected for the MAJC TLS processor 
and Cintra et al. [9] restrict speculative decompositions in 
their TLS architecture to the inner-most loop of a loop 
nest. 

There has also been research on improving performance 
of STLs once they are selected.  These techniques include 
hardware synchronization and value prediction schemes to 
minimize violations [10][30], and compiler scheduling to 
increase distances between inter-thread dependencies 
[30][34]. 

Numerous commercial and research compilers based on 
array dependence analysis for parallelizing Fortran 
programs have been developed [2][5][14][27].  Several 
studies have looked at how these compilers might be 
applied to general programs [4][17][24].  The Jrpm system 
exploits parallelism exposed to the hardware analyzer with 
only a simple scalar compiler.  Additional use of an array 
data-dependence compiler might further improve parallel 
performance of STLs chosen by TEST and uncover hidden 
parallelism, but this is beyond our current scope. 

There has been other loosely related research that has 
used feedback to dynamically parallelize programs. Ko et 
al. [18] identified optimal decompositions through brute-
force incremental execution of all possible decompositions 
in multi-level parallel programs.   There have been 
numerous systems designed to tune parallel performance 
on traditional multiprocessors [1][13][19], but they have 
relied on off-line, rather than real-time, dependency 
analysis of memory traces. 

3. Java Runtime Parallelizing Machine 
(Jrpm) 

Hydra CMP

Java VM

Application

TEST profiler TLS support

Native code 
+ 

Annotation 
instructions

Native TLS 
codeJIT Compiler

Profile analyzer

Java bytecode

CFG / DFG

1

2

3

4

5

1 Identify possible STLs by analyzing bytecodes and compile 
natively with annotation instructions.

2 Run annotated program sequentially, collecting TEST 
profile statistics on potential STLs.

3 Post-process profile statististics and choose STLs that 
provide the best speedups.

4 Recompile code with TLS instructions for selected STLs.

5 Run native TLS code.
 

Figure 1 – Block diagram of Jrpm. 
A block diagram of Jrpm outlining its various software 

and hardware components is shown in Figure 1.  The 
compiler chooses possible STLs by analyzing a program 
control-flow graph.  A program that has been dynamically 
compiled with instructions annotating local variables and 
STL boundaries is executed as a sequential program on 
one processor of Hydra.  The trace hardware analyzes 
prospective STLs.  The code is dynamically recompiled 
into speculative threads on regions that are predicted to 
have the largest speedup and most coverage.  Section 3.1 
and Section 3.2 provide a brief overview of the Hydra 
CMP and the microJIT dynamic compiler.  

3.1. Hydra CMP with Speculative Thread 
Support 

Hydra [15][22], shown in Figure 2, consists of four 
single-issue pipelined MIPS processors, each with private 
L1 data caches, attached to an integrated on-chip L2 cache 
with separate read and write buses.  Speculative thread 
support in our CMP consists of special coprocessor 
instructions, extra speculative tag bits added to each line of 
the L1 data caches, and a set of secondary cache write 
buffers.  The coprocessor instructions provide an interface 
to the thread speculation control hardware, the tag bits 
detect data dependency violations between threads, and the 
write buffers hold speculative data until it can be safely 
committed to the secondary cache or discarded.  The 
physical limits of buffered speculative state are given in 
Table 1. 



 

Table 1 – Thread-level speculation buffer limits. 
Buffer Per-thread limit Associativity 
Load buffer 16kB (512 lines x 32B) 4-way 
Store buffer 2kB (64 lines x 32B) Fully 

Table 2 – Thread-level speculation overheads. 

TLS Operation 
Overhead 
/ delay Additional overheads 

Loop startup 25 cycles Initialize loop local variables 
Load register-allocated loop 
invariants 

Loop shutdown 25 cycles Complete sum and min/max 
reductions 

Loop end-of-iteration 5 cycles Increment loop iterators 
Violation and restart 5 cycles Load register-allocated loop 

invariants 
Store-load 
communication 

10 cycles  

3.2. microJIT Dynamic Compiler 
The open-source Kaffe virtual machine 

(http://www.kaffe.org/) was chosen for our Java runtime 
system.  The microJIT compiler [8] was augmented to 
generate both annotated code for TEST analysis and 
speculative thread code.  Once a STL is chosen, the 
compiler inserts assembly routines, shown in Table 2, that 
start, control, and terminate speculative threads. These 
routines introduce some overheads relative to the original 
sequential code.  The compiler also performs optimizations 
and transformations on the selected STLs.  Inter-thread 
local variable dependencies are globalized and local 
variable initializers are communicated to each thread.   
Optimizations that improve speculative performance, like 
register allocating loop invariants, using non-violating loop 
inductors, inserting synchronization locks, and 
transforming reduction operations (e.g. sum, min/max), are 

applied when possible.  
Details on these speculative 
compiler optimizations will 
be presented in a future 
paper.   

4. TEST Algorithms 
This section describes in-

depth the trace analyses 
performed on potential 
thread decompositions and 
the decision process used to 
select thread decompositions 
from collected statistics.  
Section 5 describes the 
hardware and software 
support required to support 

the trace analyses. 

4.1. Identifying Potential Decompositions 
Speculative threads can be composed from loops, 

method call returns, and general regions [7][15][23].  The 
remainder of this paper will focus only on decompositions 
formed from loops.  Our experiments so far have not found 
many method call return or general region decompositions 
that are either not covered by similar loop decompositions 
or have significant coverage to impact total execution time. 

The compiler chooses potential STLs by examining a 
method’s control-flow graph to identify all natural loops 
[21].  Loops are chosen optimistically, relying instead on 
TEST results to identify desirable decompositions.  Any 
loop without obvious loop-carried dependencies that 
would completely eliminate speedup (e.g. end-of-loop 
store and start-of-loop load) is considered a potential STL.  
Loop inductors [21], which are dependencies that can be 
eliminated by the compiler, are ignored so that potentially 
parallel loops are not overlooked.  Scalar analysis is used 
to identify simple dependencies, but we forgo advanced 
techniques that require analyzing array access patterns, 
control flow, or memory accesses to find dependencies. 

4.2. Trace Analyses 
This section describes the two trace analyses performed 

to characterize the potential of a STL, the load dependency 
analysis and the speculative state overflow analysis.  TEST 
analysis relies on the notion of event timestamps, or the 
time when an event occurs.  Timestamps from different 
events are compared against each other to compute 
specific statistics. 
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Spec tags (16kB)
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Figure 2 – Block diagram of our CMP.  TLS support blocks shown in dotted lines. TEST 
hardware blocks shown in dark blocks.



 

4.2.1 Load dependency analysis.  The load dependency 
analysis looks for inter-thread dependencies for a STL, as 
illustrated in Figure 3.  A store timestamp is recorded on a 
memory or local variable store, and retrieved on a 
subsequent load to the same address.  The store timestamp 
is checked against thread start timestamps to determine if 
an inter-thread dependency arc exists to the previous 
thread (t-1), or an earlier thread (< t-1).  If an inter-thread 
dependency arc is detected, the arc length, the difference 
between the current time and the store timestamp, is 
recorded.  While many dependency arcs may exist 
between any two given speculative threads, we only record 
the critical arc (dark arrows in figure), which is the 

shortest arc and limits parallelism between the threads. 

4.2.2 Speculative state overflow analysis.  The 
speculative state overflow analysis checks that speculative 
state for a STL can fit within the L1 caches and store 
buffers.  Each L1 data cache line includes additional tag 
bits to record a processor’s speculative read state.  Each 
speculative store buffer, with L1 cache line sized entries, 
collects all speculative heap writes made by a processor.  
Dropping a L1 cache line with speculative state or 
overflowing a store buffer forces a speculatively executing 
thread to stall until reads or writes can be performed safely 
(when the thread becomes the non-speculative “head” 
thread). 
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Figure 4 – Illustration of the speculative state overflow analysis.  Thread start time (column d) and counters (columns f & g) 

are reset for every new thread.  Arrows show conditions that cause counters to be incremented. 

// outer loop (selected STL)
do { 

n = root;
// inner loop
while (tree[n].left != -1) { 

if(in.getBit(in_p) == 0) {
n = tree[n].left;

} else {
n = tree[n].right;

}
in_p++;

}
out[out_p++] = tree[n].char;

} while (in_p < in.size());
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Figure 3 – Example (Huffman decode) of the load dependency analysis.  Analysis is performed on the outer loop in this example.  
Loop-carried dependencies are bold in source code.  Arrows represent dependency arcs.  Critical arcs shown in darker arrows. 



 

An example of the overflow analysis on a set of STL 
memory references is shown in Figure 4.  The speculative 
state overflow analysis relies on timestamps associated 
with cache lines.  A cache line timestamp and cache line 
tag is recorded for the cache line a heap load or store 
would have hit.  Subsequent memory accesses check for a 
previously recorded cache line timestamp with a matching 
cache line tag (columns a & b).  If no timestamp exists or 
if it is less than the current thread start timestamp of a STL 
(column e), counters tracking buffer requirements are 
incremented to reflect new buffer state required by the 
current thread.  The load counter (column f) tracks new 
speculatively read cache lines, and the store counter 
(column g) tracks new store buffer entries.  The overflow 
counter (column h) is incremented if either counter for the 
current thread exceeds buffer limits.  

4.3. Selecting Thread Decompositions 
The statistics shown in Figure 3 and Figure 4 are 

accumulated over time and analyzed to predict the 
performance of a STL.  The estimated speedup for a STL, 
shown in Equation 1, is derived from average critical arc 
frequencies, thread sizes, critical arc lengths, overflow 
frequencies, and speculative overheads.   

Speedup is limited to four in Hydra (or total number of 
processors in the CMP).  Note that we expect maximal 
speedup if the average critical arc length is at least ¾ the 
average thread size (or (p-1)/p where p is the number of 
processors).  This is the point at which the processors are 
completely utilized and the inter-thread dependencies are 
separated enough not to limit speedup. 

There are multiple possible decompositions that can be 
chosen in a loop nest.  For example, in Figure 3, either the 
outer loop or the inner loop can be transformed into 
speculative threads, but not both at the same time.  We 
select the best STL by comparing the estimated execution 
time using speculative threads for a STL against the 
estimated execution time using speculative threads for any 
nested STL decompositions instead, plus any non-
speculative serial execution, as shown in Equation 2.   

Table 3 shows how this equation is applied to the 
example loop in Figure 3. 
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Equation 2 – Comparison function for choosing an optimal 
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Table 3 – Application of Equation 2 to the loops from 

Figure 3 chooses the outer loop as the better STL. 

 
Outer 
loop  

Inner 
loop Serial 

Sequential time 
(cycles) 

18941K  13774K 5167K 

Speedup 1.85  1.30 1.00 
TLS time (cycles) 10238K  10595K 5167K 
Total time (cycles) 10238K < 15762K  

5. TEST Hardware Implementation 
Simulations indicate program execution slows over 

100x when profiling using a software-only implementation 
of the trace analyses described in Section 4.2.  Overheads 
result from callback annotations on every memory and 
local variable access, and comparisons required to resolve 
inter-thread dependencies and compute speculative state 
requirements.  This magnitude of slowdown is 
unacceptable in a real dynamic compilation system, even if 
the analysis is only performed on a limited basis.  
Furthermore, the significant software overheads introduce 
imprecision into the analysis, making difficult to derive 
accurate thread size and dependency arc lengths. 

The overheads and imprecision of software-only 
analysis led us to consider how hardware support could 
speedup profiling and improve accuracy.  The hardware 
we designed analyzes a sequentially executing program 
and works when speculation is disabled.  Annotation 
instructions inserted by the dynamic compiler (Section 5.1) 
into native code mark important events.  The annotation 
instructions communicate events to the hardware 
comparator banks that perform the actual trace analyses 
(Section 5.2).  The speculative store buffers, which are idle 
during sequential non-speculative execution, hold 
timestamps of previous events (Section 5.3). 
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Equation 1 – Estimated speedup for a STL. 



 

5.1. Annotating Instructions 
The annotating instructions, shown in Table 4 and 

Figure 5, mark events relevant to the trace analyses 
described in Section 4.2.  Memory load and store events 
are automatically communicated to the tracing hardware 
when tracing is enabled.  sloop, eloop, and eoi 
instructions mark the entry, exit and end-of-iteration of a 
potential STL.  Local variables in the same calling context 
as a potential STL are tracked with explicit annotations to 
simplify tracking of named variables that move between 
registers and the runtime stack in optimized compiled 
code.  Block-local and temporary variables are not 
annotated because they never cause a dependency.  At the 

end of a STL (e.g. exit from a loop), 
special routines read the collected 
statistics from TEST. 

Program execution slowdown 
results from local variable 
annotations and overheads to read 
collected statistics at the end of a 
STL, as shown in Figure 6.  Several 
optimizations were performed by 
the JIT compiler to reduce 
slowdowns of the annotated native 
code.  Only the first local variable 
load in a block or a loop is 
annotated since it would result in 
the shortest dependency arc, if one 
existed.  Within loop nests, calls to 
read collected statistics at the end of 
a STL are hoisted to the outer-most 
loop when there is only one loop at 
each level.  After performing these 
optimizations, most benchmarks 

experience no more than 10% slowdown, and only 2 
applications have slowdowns approaching 25%. 

5.2. Comparator Array 
The comparator banks carry out the bulk of the 

dependency and overflow trace analyses.  One comparator 
bank, shown in Figure 7, tracks the progress for a given 
STL.  Each bank, primarily composed of comparators and 
counters, analyzes incoming loads and stores.  An array of 
comparator banks allows us to trace multiple potential 
STLs executing concurrently, as would be the case when 
analyzing nested loops.  Comparators are used to compare 
thread start timestamps against incoming cache line 
timestamps to check for speculative state overflows and 
against store timestamps to identify critical arcs.  At the 
end of each thread of a STL, arc lengths, critical arc 
counts, and buffer overflows are accumulated into 
counters. 

In a real implementation of TEST with multiple banks, 
logic in the critical arc calculation block can be shared 
between banks.  A given load access can be a dependency 
for only one STL.  For example, in a nested loop, a load 
dependency may exist to a previous iteration in the current 
loop or iteration in an enclosing loop, but not to both.  
Consequentially, only one critical arc calculation block in 
an array of comparator banks will be active for a given 
load access.  To share this block, the critical arc 
calculation block is pipelined after dependency arc 
identification, as shown in Figure 8a. 

Multiple comparator banks are assigned in loop nests 
when multiple potential STLs execute concurrently.  The 
finite number of comparator banks restricts the number of 
loops in a loop nest that can be analyzed concurrently.  
Several mechanisms help ensure the banks are still applied 

Table 4.  Summary of annotating instructions and associated operations. 
Instruction Description Normal 

operation 
Trace operation (when enabled) 

lw|lb|lbu|lh 
lhu|lwc1 addr 

Load 
 

Load Get memory access store timestamp and cache 
line timestamp  
Record memory access cache line timestamp 

sw|sb|sh| 
swc1 addr 

Store 
 

Store Get previous cache line timestamp 
Record memory access store timestamp and 
cache line timestamp 

lwl vn Local 
variable load  

none Get store timestamp for local variable vn 

swl vn Local 
variable store  

“ Record store timestamp for local variable vn 

sloop n Start loop “ Allocate comparator bank 
Increment current bank pointer 
Set current thread start timestamp 
Reserve n local variable store timestamps 

eoi Loop end-of-
iteration  

“ Shift thread start timestamps for current bank 
Set current thread start timestamp for current 
bank 

eloop n End loop “ Free comparator bank 
Decrement current bank pointer 
Free n local variable store timestamps 

li $s1, 10
sloop     1

loop_top:
lwl 1
blez $s1, loop_exit
jal call
bnez $v0, if_fail
lwl 1
addi $s1, $s1, -1
swl 1
b         loop_eoi

if_fail:
lw $t0, 8($s0)
addi $t0, $t0, 1
sw $t0, 8($s0)

loop_eoi:
eoi
b         loop_top

loop_exit:
eloop 1
jal read_statistics

1 Mark start of loop and allocate 1 
local variable timestamp slot for 
lcl_v.

4

Instrumented machine code

int lcl_v = 10;
while( lcl_v > 0 ){

if( call() != 0 ){
lcl_v--;

}
else{

this.val++;
}

}

Original loop

1

4 Mark end of loop and free local 
variable timestamp.  Jump to 
routine to read collected 
statistics.

2

2 Local variable annotations mark 
accesses to lcl_v.

3 lw and sw automatically 
communicated to profiler.

3

 
Figure 5 – A sample loop compiled with annotating 

instructions. 



 

effectively.   Precedence is initially given to the outer-most 
loop, and analysis of deeply nested loops is disabled when 
there are no comparator banks left or no room left for local 
variable timestamps (see sloop and eloop in Table 4).  
When a comparator bank consistently predicts speculative 
buffer overflows for an outer STL, it can be freed to be 
used deeper in a loop nest.  When sufficient data has been 

collected to predict behavior for a 
STL, the annotations marking it 
can be disabled dynamically (e.g. 
overwriting JIT compiled code 
with nop instructions).  This 
ensures the system can eventually 
collect information on 
decompositions deep within a 
loop nest.   

Pipelining access to the 
critical arc calculation block also 
enables TEST to provide detailed 
dependency information that can 
be used for optimization.  In an 
extended implementation of 
TEST, the registers and counters 
in the critical arc calculation 
block are replaced with accesses 
to content addressable SRAM, as 

shown in Figure 8b.  This configuration allows critical arc 
lengths, accumulated critical arc lengths, and critical arc 
counts to be binned by the load instruction PC to be later 
analyzed by a programmer or compiler. 

We estimated how much logic would be consumed by 
an implementation of TEST.  Transistor counts were 
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Figure 7 – Block diagram of one comparator bank. 
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derived from the logic required for a implementation with 
eight comparators eight.  As Table 5 suggests, TEST 
hardware would add less than 1% to the transistor count of 
the Hydra CMP with TLS support.   

5.3. Store Buffers 
The five store buffers (see [15] for an explanation of 

why there are five) that normally hold writes during 
speculative execution hold timestamps during profiling.  
Each store buffer is 2KB (64 32B cache lines).  The store 
buffers are statically partitioned, with three buffers holding 
heap access store timestamps, one holding cache line 
timestamps, and one holding store timestamps to local 
variables.  An address’ timestamp is returned when 
requested by an annotating memory or local variable 
instruction. 

Store timestamps in the store buffers, organized as 
FIFO (first-in, first-out) during tracing, effectively hold a 
limited history of memory and local variable accesses.  For 
heap access store timestamps, 192 cache lines, or 6KB, of 
write history can be held. 

To keep logic additions for the speculative state 
overflow analysis simple, the lower bits of an address 
index the store buffer holding cache line timestamps and 
cache line tags like a direct mapped cache.  The actual 
speculation store buffers are fully associative and the L1 
caches are 4-way set associative.  Not accounting for 
associativity introduces some error into the overflow 
analysis, but should not affect its usefulness in estimating 
speculative state requirements. 

6. Benchmark Analysis 

6.1. Benchmark Results 
Table 6 lists benchmarks we have evaluated using 

TEST, including applications from the jBYTEmark 
(http://www.byte.com/), SPECjvm98 
(http://www.specbench.org/), and Java Grande 

(http://www.epcc.ed.ac.uk/javagrande/javag.html) 
benchmarks suites.  The columns on the right of this graph 
summarize the characteristics of the STLs chosen by 
TEST.  Figure 10 shows graphically the coverage and 
expected speedups of selected STLs.   

Overall, the selected STLs exhibit significant thread 
size (column h) and coverage diversity.  MipsSimulator, 
raytrace, IDEA, EmFloatPnt and FourierTest have very 
coarse threads while moldyn and NeuralNet have very 
fine-grained threads.  Ignoring inter-thread dependencies, 
analysis of the selected STLs suggest that the thread size 
is primarily constrained by the limited store buffer size 
rather than the speculative load state in the L1 cache lines. 

While many programs have critical sections, 
Assignment, NeuralNet, euler and mp3 have many STLs 
that contribute equally to total execution time.  Several 
programs have more selected STLs (column e) than shown 
in the table, but the omitted decompositions do not have 
any significant coverage (< 0.5%).  mp3, db, jess, and jLex 
have significant sections of serial execution not covered by 
any potential STLs, limiting total speedup for these 
applications. 

The larger programs contain significant numbers of 
loops (column c) that would have made manual 
identification of STLs a time consuming task.  A visual 
analysis of the source code identified that less than a third 
of the benchmarks can be analyzed by a traditional 
parallelizing compiler (column a) (e.g. programs that 
resemble Fortran floating point code w/ affine array 
accesses, no dynamic objects/pointers, bounded loops, and 
little control flow).  The average height of selected loops 
from the inner loop (column f) suggests that desired STLs 
have granularities larger than the inner-most loop in a loop 
nest.  The maximum depth of loop nests executed (column 
d) indicates that eight comparator banks are sufficient to 
analyze most of the benchmark programs without 
intervention from the runtime system. 

Apart from simplifying parallelization of floating point 
programs for a CMP and automatically selecting STLs in 
integer applications that are difficult to analyze statically, 
our experiments suggests that dynamic parallelization has 
other potential benefits.  One advantage is that STL 
selections can be made that account for input data set sizes.  
We noticed several applications where selected 
decompositions can change according to input data sizes 
(column b).  In these benchmarks, multiple levels of 
parallelism exist in key loops.  Assignment, NeuralNet, 
LUFactor, euler, and shallow use a nested loop to traverse 
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Figure 8 – Comparator bank (a) base pipeline design (b) extended 

pipeline design. 
 
Table 5 – Transistor count estimates Hydra with TLS and TEST 

support. 
    Transistors  
Structure Count Each Total % of 

total 
CPU + FP core 4 2500K 10000K 8.64% 
16kB I / 16kB D Cache 4 1573K 6291K 5.43% 
2MB L2 cache 1 98304K 98304K 84.91% 
Write buffer 5 172K 861K 0.74% 
Comparator bank 8 39K 322K 0.28% 
Total    115778K 100.00% 



 

2-dimensional data arrays.  For these programs, loops 
lower in a loop nest must be chosen with larger data sets 
because the number of inner loop iterations will rise, 
increasing the probability of overflowing speculative state 
when speculating higher in a loop nest.  Choosing STLs 
dynamically also allows selected STLs to change as CMP 
designs evolve.  For example, larger STLs that would 
cause speculative buffer overflows in our current system 
could be chosen during runtime by a future Hydra design 
with larger speculative store buffers and L1 caches. 

6.2. Imprecision Effects 
Each benchmark was run speculatively on Hydra using 

the STLs selected by TEST.  Figure 11 shows our analysis 
does a good job of predicting speculative performance.  A 
comparison of speculative performance and results from 
TEST suggests disparity results mostly from selected STLs 
with highly varying thread sizes and large violation rates 
during actual speculative execution.  One should keep in 
mind, though, that relative speedup estimates to other 
potential STLs are more important.  The primarily role of 
TEST is to identify the best STLs, so absolute values are 
not critical.   

Precision is lost 
during the accumulation 
and binning of thread 
statistics.  With our 
algorithm, temporal 
dependency information 
is lost that could detect 

multi-iteration 
parallelism, as illustrated 
in Figure 9.  In non-
constant sized loops or 
in loops where work 
increases or decreases 
monotonically by 
iteration, accumulating 
statistics for a STL 
averages thread sizes 
and dependency arc 
lengths, hiding per-
thread variance or linear 
changes in these values.  
Finally, the limited 
history of heap access 
store timestamps and 
collecting dependency 
statistics in only two 
bins (t-1 and < t-1) limit 
the analysis’ accuracy 
on distant thread 
dependencies. 

 

 for( i=0; i < limit; i++ ){ 
  if( i % n != 0){ 
   A[i] = A[i-1]; 
  } 
 } 
Figure 9 –TEST analysis may incorrectly conclude this loop 
to be non-parallel.   Parallelism exists at every nth iteration, 

but the count of dependencies to the previous iteration is 
high. 

In practice, the lost precision does not appear to 
decrease TEST’s ability to identify good STLs.  Parallel 
loops with complex dependencies that might fool TEST 
analysis were not found in any critical regions of the 
benchmark programs.  While many of the benchmarks, 
particularly the integer programs (e.g. MipsSimulator, 
Huffman, db and NumHeapSort), exhibit STLs with highly 
varying thread sizes and dependency arc lengths, this did 
not affect our ability to identify the best decomposition.  
The accuracy of distant thread dependencies was also not 
critical.  For floating point applications, parallelism existed 
at many levels and granularities, and selected 
decompositions were mostly limited by speculative buffer 
limits.  In integer applications, we found that available 

Table 6 – Benchmarks evaluated with STLs selected by TEST. 
Characteristics TEST Analysis 
(a) (b) (c) (d) (e) (f) (g) (h) 
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Integer                 
 Assignment Resource allocation 51x51 N Y 32 5 11 2.0 29 199 
 BitOps Bit array operations   N N 4 2 2 1.0 7646 29 
 compress Compression   N N 28 4 4 1.8 93755 546 
 db Database 5000. N Y 37 5 6 1.7 23142 510 
 deltaBlue Constraint solver   N N 22 4 5 2.6 82 501 
 EmFloatPnt FP emulation   N N 7 3 1 2.0 255 20127 
 Huffman Compression   N N 14 3 6 1.3 502 108 
 IDEA Encryption   Y N 2 2 1 2.0 242 6307 
 jess Expert system   N N 134 11 4 5.3 166 339 
 jLex Lexical analyzer gen   N N 128 6 7 3.0 71 2699 
 MipsSimulator CPU simulator   N N 19 4 2 3.5 51931 1313 
 monteCarlo Monte carlo sim   N N 15 3 5 1.4 942 119 
 NumHeapSort Heap sort   N N 5 3 2 2.0 6081 555 
 raytrace Raytracer   N N 14 4 1 1.0 65 158 
Floating point                  
 euler Fluid dynamics 33x9 Y Y 32 2 13 1.1 66 304 
 fft Fast fourier transform 1024. Y Y 5 3 2 2.0 187 231 
 FourierTest Fourier coefficients   Y N 2 2 1 2.0 100 167802 
 LuFactor LU factorization 101x101 Y Y 13 3 7 1.6 64 455 
 moldyn Molecular dynamics  Y N 8 2 1 1.0 1026 96 
 NeuralNet Neural net 35x8x8 Y Y 19 4 8 1.9 9 617 
 shallow Shallow water sim 256x256 Y Y 11 3 3 1.0 257 1420 
Multimedia              
 decJpeg Image decoder   N N 61 5 21 2.2 34 124 
 encJpeg Image compression   N N 62 8 9 1.6 54 121 
 h263dec Video decoder   N N 54 5 3 3.0 165 212 
 mpegVideo Video decoder   N N 69 8 9 1.4 23 701 
 mp3 mp3 decoder   N N 98 6 17 2.3 55 181 

 



 

parallelism was mostly determined by dependency 
behavior to recent, not distant, past threads. 

6.3. Guiding Optimization 
TEST generates statistics that aid compiler optimization 

of selected STLs.  The extended implementation of TEST 
can bin STL dependencies according to the load PC (and 
consequently, to specific program regions and variables).  
Dependency critical arc lengths relative to the thread size 
can also be collected.  For frequently occurring critical 
arcs significantly less than the size of the loop, these 
statistics direct the compiler to variables where optimized 
placement of loads and stores can extend critical arcs 
[30][10] or where synchronization can be inserted to 
minimize violations [22]. 

These statistics are also invaluable for speculative 
programmer optimizations 
beyond that which can be 
uncovered by compiler 
analysis or can be performed 
safely by automatic 
transformations.  Feedback 
from our simulations of TEST 
has helped identify false 
dependencies and aided the 
optimization of several 
benchmarks, specifically 
NumericSort, Huffman, db, 
and MipsSimulator.  In these 
applications, the statistics 
quickly identified one or two 
critical dependencies that 
could be restructured or 
removed to expose parallelism 
to the speculation hardware.   

7. Conclusions 
This paper describes Tracer for Extracting Speculative 

Threads (TEST), a hardware tracer that analyzes potential 
speculative-thread loops (STLs) in running Java 
applications.  The proposed hardware requires minor 
additions to our CMP with speculation support and incurs 
only moderate slowdown of a program during analysis.  
The results show that the proposed hardware can select 
decompositions that maximize speedup and parallel 
coverage without exceeding speculative buffer limits.  The 
Java runtime system can then dynamically recompile 
selected decompositions into speculative threads.    

Using this approach, we can identify speculative 
parallelism dynamically in integer and floating-point 
applications. A traditional parallelizing compiler would be 
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Figure 11 – Estimated speedup versus actual speedup. 
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challenged because of the difficulty of analyzing integer 
programs statically, and profiling techniques without 
hardware support would execute too slowly for run-time 
analysis.  Our experiences with the analyzer also suggest it 
can enhance compilation by providing statistics to guide 
speculative optimizations and by producing feedback to 
aid programmers with optimizations that cannot be 
performed automatically. 
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