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Abstract

High Performance Fortran (HPF) has emerged as a standard dialect of Fortran for data parallel computing.
However, for a wide variety of applications, both task and data parallelism must be exploited to achieve the best
possible performance on a multicomputer. We present the design and implementation of a Fortran compiler that
integrates task and data parallelism in an HPF framework. A small set of simple directives allow users to express
task parallel programs in a variety of domains. The user identifies opportunities for task parallelism, and the compiler
handles task creation and management, as well as communication between tasks. Since a unified compiler handles
both task parallelism and data parallelism, existing data parallel programs and libraries can serve as the building
blocks for constructing larger task parallel programs. This paper concludes with a description of several parallel
application kernels that were developed with the compiler. The examples demonstrate that exploiting data and task
parallelism in a single framework is the key to achieving good performance for a variety of applications.

1. Introduction

Compilation of programs for parallel computers has received considerable attention for many years. Several paral-
lelizing compilers have been developed for data parallel programs, including Fortran D [26] and Vienna Fortran [9].
High Performance Fortran [15] (HPF) has emerged as a standard dialect of Fortran for data parallel computing. The
core of HPF contains a set of extensions to describe data mappings and parallel loops. These allow programmers to
write and compile data parallel programs for a variety of architectures. However, in its current form, HPF does not
address task parallelism or heterogeneous computing adequately. Applications that require different processor nodes
to execute different programs, possibly on different data sets, cannot be programmed effectively in HPF. There is
growing interest in the idea of exploiting both task and data parallelism [1, 7, 8, 10, 11, 12, 14, 25]. There are a
number of practical reasons for this interest:

Limited scalability: Many applications, especially in the domains of image and signal processing, do not scale
well when using data parallelism, because data set sizes are limited by physical constraints, or because they have a
high communication overhead. For example, in multibaseline stereo [27], the main data set is an image whose size is
determined by the camera interface. Task parallelism makes it possible to execute individual computations on a subset
of nodes and thus improves performance, despite limited scalability.

Real-time requirements: Many real-time applications (e.g. in robot control) have strict latency and throughput
requirements. Task parallelism allows the programmer to partition resources (including processor nodes) explicitly
among the application modules to meet such requirements. By supporting both task and data parallelism in a single
framework, the user can tailor the mapping of an application to a particular performance goal.

Multidisciplinary applications: Task parallelism can be used to effectively manage heterogeneity in applications
and execution environments. There is an increased interest in parallel multidisciplinary applications where different
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modules represent different scientific disciplines and may be implemented for different parallel machines. For example,
the airshed model [16, 17] represents a “grand challenge” application that characterizes the formation of air pollution
as the interaction between wind and reactions among various chemical species. It is natural to model such interactions
using task parallelism; e.g. one module (or task) models the effect of the wind, and a different module models the
chemical reactions. Further, the use of task parallelism is necessary if different modules are designed to execute on
different types of parallel or sequential machines.

There are many ways in which task and data parallelism can be supported together in a programming environment.
A fundamental design decision is whether the programmer has to write programs with explicit communication, or if
the responsibility of communication generation is delegated to the compiler. One of the benefits provided by data
parallel languages like HPF is that they liberate the programmer from dealing with the details of communication,
which is a cumbersome and error prone task. If task parallelism is to find acceptance, writing task parallel programs
must be no harder than writing data parallel programs, and therefore, in our design, all communication operations are
generated by the compiler. The user writes programs for a common data space, and the compiler maps the data objects
to the (possibly disjoint) address spaces of the nodes of the parallel system. This division of responsibility also allows
communication optimizations by the compiler. Other fundamental design decisions include whether task management
should be static or dynamic, and strategies for processor allocation and load balancing.

We have designed and implemented task parallelism as directives in a data parallel language based on HPF. This
prototype compiler is called Fx [25, 22].1 Our objectives are to develop a system that produces efficient code, and to
use this system to develop applications that need task and data parallelism. The current targets for this compiler are
an iWarp parallel machine, networks of workstations running PVM, and the Cray T3D. The compiler has been used to
develop a variety of task and data parallel applications, including synthetic aperture radar, narrowband tracking radar,
and multibaseline stereo [13, 24].

There are obvious practical advantages of extending HPF for task parallelism instead of inventing a new language.
Existing sequential and data parallel libraries can be used, it is easier to convert existing programs to task and data
parallel programs, and it is easier to gain user acceptance. Finally, it is important to be able to compile task and data
parallel programs efficiently using existing compiler technology. In particular, we allow several directives to help
the compiler in generating efficient code, even though some directives may become obsolete as more sophisticated
compilers become available.

The paper is organized as follows. Section 2 provides the fundamental motivation for exploiting task and data
parallelism and introduces an example program, which is re-used throughout the paper to illustrate various concepts.
Section 3 describes the user model that Fx presents for writing task and data parallel programs. Section 4 discusses the
main issues involved in compiling such programs and describes how task parallelism and data parallelism coexist in
one framework. Section 5 reports experience with applications written for the Fx compiler; this section demonstrates
the performance benefits that can be obtained by finding the right balance between task and data parallelism.

2. Requirements for efficient parallelization

Many applications must exploit both task and data parallelism for efficient execution on massively parallel programs.
Consider the following example application kernel (called FFT-Hist) from signal and image processing. Input is a
sequence of m 512 � 512 complex arrays from a sensor (e.g., a camera). For each of the m input arrays, we perform
a 2D fast Fourier transform (FFT), followed by some global statistical analysis of the result, including constructing a
histogram. The 2D FFT consists of a 1D FFT on each column of the array, followed by a 1D FFT on each row. The
main loop nest in FFT-Hist is shown in Figure 1.

For each iteration of the loop, the colffts function inputs the array A and performs 1D FFTs on the columns, the
rowffts function performs 1D FFTs on the rows, and the hist function analyzes and outputs the result. This is an

1There are two explanations for this name. On one hand, the "x" emphasizes that the language and directives may still undergo further
development, and the "F" emphasizes how irrelevant details of the base language (Fortran) are. On the other hand, efficient translation of programs
for parallel machines often brings to mind the use of special effects.
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do i = 1,m
call colffts(A)
call rowffts(A)
call hist(A)

enddo

colffts rowffts hist

Input is a sequence of m arrays Output is a sequence of m arrays
A1 A2 … Am, , , A1 A2 … Am, , ,(read by colffts) (written by hist)

Figure 1: FFT-Hist example program and task graph

interesting program because it represents the structure of a large class of applications in image and signal processing,
and because it illustrates some important tradeoffs between different styles of mapping programs onto parallel systems.
We use this simple program as a running example throughout the rest of the paper.

Suppose we have at our disposal parallel versions of the three functions in Figure 1 so that each function can run on
1 or more nodes. A compiler or user has to make a decision on how many nodes to assign to each function. Figure 2
depicts the speedup obtainable for these three functions, as a function of the number of nodes. The colffts function
performs an independent 1D FFT on each column of A. So if we assign blocks of columns to nodes, we can run all
of the nodes independently, and the function scales almost linearly up to 512 nodes. The rowffts function behaves
in the same way if the array is distributed row-wise among the nodes. The key point is that neither colffts nor
rowffts generates any communication, and thus each scales well. On the other hand, the hist function contains
significant communication and thus does not scale well.

hist

row/col ffts

Number of nodes

Speedup

Figure 2: Speedup curves for the functions in FFT-Hist.

Given that only two out of the three functions scale well, how do we go about parallelizing the loop nest in Figure 1?
One approach is a purely data parallel mapping: use all of the nodes to execute colffts, then use all of the nodes
to execute rowffts, then use all of the nodes to execute hist, and so on. As the number of nodes increases, this
purely data parallel approach works well for the colffts and rowffts functions but makes inefficient use of the
nodes during the hist routine because hist does not scale well.

To achieve good efficiency for functions like the hist function, we must allocate a small number of nodes to it.
So for large parallel systems, how do we use up the remaining nodes? The answer is to exploit a mix of task and data
parallelism.
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3. User model for task and data parallelism

The input language for Fx is based on HPF: The array statments of Fortran 90 augmented with data layout statements
and a FORALL-like parallel loop construct [29]. These constructs are described briefly in Section 3.1.

In the Fx model, a task corresponds to the execution of a call to a task-subroutine. A task-subroutine is a
data parallel subroutine, with well-defined side-effects, contained inside a special code section in the main program
called a parallel section. The only allowable side-effect of calling a task-subroutine is that the values of its actual
parameters might change. For each lexical call to a task-subroutine, the programmer provides (1) hints that indicate if
an actual parameter is read and/or modified by the task subroutine, and (2) directives that control the mapping of the
task-subroutines onto nodes. These hints and directives are described later in Section 3.2.

The execution model for an Fx program is as follows: The program begins execution as a single data parallel
task running on all nodes. When the flow of control reaches a parallel section, the tasks specified by calls to task-
subroutines inside the parallel sections are executed subject to data dependence constraints, i.e., each task waits for
its input, executes, sends its output, and terminates. Parallelism is obtained by executing different tasks on different
sets of nodes. When all tasks have terminated, the execution of the parallel section is over, and the program continues
execution as a single data parallel task.

Figure 3 depicts some possible executions of FFT-Hist for m = 4 iterations on a parallel system. Details of the
organization of the parallel system do not matter at this time. For each node, this figure indicates what function of
FFT-Hist is executed on this node at a given time. In Figure 3(a), the main program starts on all of the nodes. Once
inside the parallel section, the task-subroutines execute one after the other; each task-subroutine runs on all of the
nodes. After 4 iterations of the loop, the main program resumes executing on all the nodes. Another possibility is
shown in Figure 3(b), where each task-subroutine runs on a disjoint set of nodes, and thus the computation is pipelined.
Notice that the hist function takes about the same time as in the mapping of Figure 3(a) – using more nodes did not
shorten execution time in Figure 3(b). Yet another option is depicted in Figure 3(c).

Since the data relationship of the calling program to the task-subroutines is well defined, the compiler can map
the tasks on different sets of nodes, and generate communication to maintain data consistency. For our application
domains, the runtime behavior of tasks can be accurately predicted before execution, so issues like load balancing and
task migration are currently not of concern to our compiler. Load balancing can be influenced by the user’s choice of
data layout, using the HPF layout directives.

The basic idea governing the role of directives is that the results obtained from parallel execution must be consistent
with those obtained from sequential execution. The main characteristics of the user model can then be summarized as
follows: (1) There are no new language constructs, only compiler directives in the form of comments. (2) There is a
common name space for shared data. (3) Tasks are represented as calls to data parallel subroutines with well-defined
side-effects. (4) Communication between tasks is generated and managed by the compiler. (5) Sequential consistency,
determinism, and freedom from deadlock are guaranteed by the compiler.

The rest of this section discusses these ideas in more detail. Section 3.1 gives a brief overview of the data parallel
constructs, and Section 3.2 describes the directives available to users.

3.1. Data parallel constructs

Data parallelism is expressed with array statements (as in HPF) and a FORALL-like parallel loop called the PDO [29].
Fx supports BLOCK, CYCLIC, and BLOCK-CYCLIC distributions in an arbitrary number of array dimensions.
Consider the following example:

c$ template t(n)
c$ align A(i,j) with t(i)
c$ align B(i,j) with t(j)
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Figure 3: Execution of FFT-Hist on a parallel system
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c$ distribute t(CYCLIC)

pdo i=1,n
A(i,:) = A(i,:) + B(:,i)

enddo

This example uses template,align, and distributedirectives to distribute the rows of array A and the columns
of array B cyclically across the parallel system. In the example above, the ith loop iteration uses an array statement to
add the jth column of B to the ith row of A. Moreover, each loop iteration is independent and can run in parallel with
the other loop iterations.

3.2. Task parallel directives

We have not introduced any new language features and rely entirely on compiler directives for expressing task
parallelism. To simplify the implementation, the current version of Fx relies on the user to identify the side effects
of the task-subroutines and to specify them. Directives are also used to guide the compiler in making performance
related decisions like program mapping. In this section, we describe the directives and hints that are used to express
task parallelism and illustrate their use for the FFT-Hist example.

Parallel sections

Calls to task-subroutines are permitted only in special code regions called parallel sections, denoted by a begin
parallel/end parallel pair. For example, the parallel section for the FFT-Hist example has the following
form:

c$ begin parallel
do i = 1,m

call colffts(A)
c$ input/output and mapping directives

call rowffts(A)
c$ input/output and mapping directives

call hist(A)
c$ input/output and mapping directives

enddo
c$ end parallel

The code inside a parallel section can only contain loops and subroutine calls. These restrictions are necessary to make
it possible to manage shared data and shared resources (including nodes) efficiently at compile time.

A parallel section corresponds to a mapping of task-subroutines to nodes. The corresponding mapping outside
the parallel section is a simple data parallel mapping, where every routine is mapped to all nodes. The current
implementation does not allow nesting of parallel sections.

Input/output directives

The user includes input and output hints to define the side-effects of a task-subroutine, i.e., the data space that the
subroutine accesses and modifies. Every variable whose value at the call site may potentially be used by the called
subroutine must be added to the input parameter list of the task-subroutine. Similarly, every variable whose value may
be modified by the called subroutine must be included in the output parameter list. A variable in the input or output
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parameter list can be a scalar, an array, or an array section. An array section must be a legal Fortran 90 array section,
with the additional restriction that all the bounds and step sizes must be constant.

For example, the input and output directives for the call to rowffts have the form:

call rowffts(A)
c$ input (A), output (A)
c$ mapping directives

This tells the compiler the subroutine rowffts can potentially use values of, and write to the parameter array A. As
another example, the input and output directives for the the call to colffts has the form:

call colffts(A)
c$ output (A)
c$ mapping directives

This tells the compiler that subroutine colffts does not use the value of any parameter that is passed but can
potentially write to array A (which is set to values read from a sensor by colffts).

Mapping directives

Exploiting task and data parallelism together opens a variety of ways to map a computation onto a parallel machine.
In the Fx model, we characterize mappings in terms of three attributes: clustering, degree of replication, and node
allocation.

A clustering is an assignment of task-subroutines to modules. At run time, each task-subroutine in a module runs
on the same set of nodes, and each module runs on a unique set of nodes. For example, Figure 4(a)–(c) shows three
possible clusterings of FFT-Hist. Figure 4(a) shows the familiar data parallel mapping where all task-subroutines are
assigned to the same module; this corresponds to the schedule in Figure 3(a). Figure 4(b) shows a purely task parallel
mapping where each task-subroutine is assigned to a different module; this corresponds to the schedule in Figure 3(b).
Figure 4(c) shows a mapping that is a mix of both.

If the data sets in the input sequence of a module are independent, and the module carries no internal state, then
that module can be replicated. Each copy of the module is called a module instance. If the module is replicated into
k instances, then we say that the mapping uses k-way replication, or equivalently, that the degree of replication for
that module is k. Module instances execute the calls to the corresponding subroutines in a round robin order such
that each instance executes only 1/kth of the total number of calls (except for boundary conditions). For example,
Figures 4(d)–(e) show mappings with 2-way replication for all modules; one replicated instance executes the even-
numbered iterations, and the other replicated instance executes the odd-numbered iterations . In Figure 4(f), the first
module is not replicated (i.e., there is only one instance), and the second module is replicated into 4 instances; this
corresponds to the schedule in Figure 3(c).

Finally, there is an assignment of nodes to module instances. This attribute is approximated graphically in Figure 4
by the relative sizes of the rectangles. For example, in Figure 4(c), each module instance is assigned half of the nodes.
In Figure 4(f), the single instance of the first module is assigned 24 of the available 64 nodes, and each instance of the
second module is assigned 10 nodes each.

Often the programmer has a good idea of how a computation should be mapped but does not want to deal with the
low level details of the mapping. To allow a programmer to pass this information to the compiler, we include mapping
directives. By their very nature, the effect of such mapping directives is machine specific (the directives are not). For
example, a user may want to indicate that some sets of tasks be mapped to physically adjacent nodes. The number of
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(a) Data parallel mapping
(no replication)

(b) Task parallel mapping
(no replication)

(e) Task parallel mapping
(2-way replication)

(d) Data parallel mapping
(2-way replication)

Clustering

Replication

(c) Mixed mapping
(no replication)

(f) Mixed mapping
(4-way replication)

Figure 4: Combinations of task and data parallel mappings.

nodes that are adjacent depends on the architecture of the target machine (4 for a 2D-torus, 6 for a 3D-torus, etc.), but in
our experience, such machine-specific hints can improve the performance dramatically. Nevertheless, these directives
have no semantic meaning; if ignored by the compiler, performance may suffer but correctness is maintained.

Fx includes the processor and origin directives to describe the clustering of task-subroutines into modules,
the allocation of nodes to modules, and the replication of modules. The processor directive states how many
nodes should be assigned to a task-subroutine. The origin directive states the location(s) of the task-subroutine in
the parallel system. In the current implementation, only rectangular subarrays can be assigned to task-subroutines,
and the parallel system is assumed to be organized as a two dimensional space, with node (0,0) at the top left of the
system. Hence processor and origin directives contain pairs of numbers referring to the size and location of a
rectangular subarray of nodes, respectively. For example, to map FFT-Hist as shown in Figure 4(f) onto an 8 � 8 array
of nodes, we use the following mapping directives:

c$ begin parallel
do i = 1,m

call colffts(A)
c$ output (A)
c$ processor (8,3)
c$ origin (0,0)

call rowffts(A)
c$ input (A), output (A)
c$ processor (2,5)
c$ origin (0,3), (2,3), (4,3), (6,3)

call hist(A)
c$ input (A)
c$ processor (2,5)
c$ origin (0,3), (2,3), (4,3), (6,3)

enddo
c$ end parallel

These directives instruct the compiler that colffts should be allocated an 8 � 3 module of nodes, with the top-left
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corner of the module at node (0,0). Task-subroutines rowffts and hist are to be placed on the same 2 � 5 module,
replicated 4 ways, with the top-left corner of the 4 module instances starting at nodes (0,3), (2,3), (4,3), and (6,3),
respectively. The replicated instances of the rowffts-hist module are called in round-robin order. So, instance 0
gets the first data set, instance 1 gets the second data set, and so on.

The current implementation of Fx only supports homogeneous parallel system, for which the size and location of a
subarray is sufficient information to map a task-subroutine. In a heterogeneous environment with different machines,
additional information is needed.

4. Compiling task parallel programs

The compiler must perform a set of steps to support task parallelism: (1) Identify the task structure of the program
and determine the placement of task-subroutines. This step determines the mapping of the application on the parallel
system. (2) Determine the communication links between the task-subroutines and identify the data to be transferred.
(3) Generate and schedule inter-task communication. (4) Generate a final program along with variable declarations to
manage the shared address space.

The different tasks in the program are obtained by examining the statements in a parallel section. The placement of
the tasks in the parallel system is obtained from the mapping directives, i.e. the processor and origin directives.
The dependences between tasks are identified by data flow analysis over array sections using the information in the
input and output directives supplied by the user. The task dependence edges are also the communication edges, and
the actual communication is generated using the task-communication graph and the data distribution information that
is present in the form of alignment and distribution directives inside task-subroutines. Declaration and distribution of
array variables, and node assignments determine the amount of memory allocated for array variables on individual
nodes.

4.1. Mapping criterion

The mapping of the tasks of a parallel program to the processor nodes is an important determinant of performance.
The directives that control mapping may be provided by the user, or generated by an automatic mapping tool. The
situation is analogous to the data layout directives in HPF. The mapping process is discussed in more detail in [24],
and an automatic mapping tool is discussed in [23]. Here we briefly discuss the basic mapping criterion, which is the
same whether the mapping is done by hand or by an automatic tool.

In our experience, the following three dimensions have the biggest impact on the quality of a mapping:

Scalability: When a computation or a subroutine is not scalable, better node efficiency is achieved by using a smaller
number of nodes for each computation instance.

Memory requirements: The minimum number of nodes needed for a computation is bounded by memory require-
ments. This is an important consideration that is often overlooked in the mapping literature.

Inter-task communication: The nature and cost of inter-task communication depends on the mapping. If two tasks
are placed in the same module, the cost of the inter-task communication is different than if they are placed in
different modules.

The major steps in generating a mapping are:(1) Cluster task-subroutines into modules. (2) Allocate nodes to
modules. (3) Replicate modules into module instances.

9



4.2. Example

We qualitatively discuss the mapping of the FFT-Hist example program. Task-subroutines rowffts and hist are
clustered into the same module to save the cost of data transfer between them. The data transfer cost is zero if these two
task-subroutines are included in the same module and hence execute on the same nodes. The cost of communication
between colffts and rowffts does not decrease if they are mapped to the same module, since a matrix transpose
is required even if they are mapped to the same set of nodes. So these two task-subroutines are kept in separate
modules to reduce the memory requirements.

Nodes are then allocated to the two modules in proportion to the computation load. The rowfft-hist module
is allocated 40 processors and then replicated to 4 instances (at least 10 processors are needed for each instance due to
memory requirements) . Each instance runs on 10 nodes, rather than having a single instance running on 40 nodes.
This is an important step since the hist routine does not scale well, and its performance improves only slightly from
10 to 40 nodes. Replication is not applied to the colffts module, since it scales nearly linearly. Figure 5 shows the
steps and the resulting mapping for a 64-node parallel system. The quantitative measurements used by our automatic
tool to arrive at this mapping is discussed in [23].

colffts rowffts hist

Clustering

Replication

Final mapping onto 64 nodes

rowffts & hist

rowffts & hist

colffts

rowffts & hist

rowffts & hist

Figure 5: Mapping steps and the final mapping of the example program

In summary, a combined task and data parallel mapping is often needed to achieve the best performance, and the
choice is based on measurable program properties. For example, Figure 6 shows the performance of the mapping
in Figure 5 on a 64-node iWarp system, relative to a direct data parallel mapping. The mapping in Figure 5, which
consists of a mix of task and data parallelism, outperforms the straightforward data parallel mapping by a factor of
two.

5. Experience with Fx applications

We used Fx for problems in a variety of domains: medical image processing, synthetic aperture radar, narrowband
tracking radar, computer vision, and airshed modelling [13]. This section describes our experience with a subset
of these applications and kernels: 2D fast Fourier transform, narrowband tracking radar, and multibaseline stereo
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Program Mapping Speedup over data parallel mapping
Data Parallel (Fig. 4(a)) 1
Task Parallel (Fig. 4(b)) 1.43
Mixed Mapping (Fig. 5) 1.95

Figure 6: Speedup for different mappings of the FFT-Hist example

imaging [13, 24]. The programs are compiled for a 64-node iWarp system [3, 4]. Since the details of the target
machine are not relevant in this context, we present the results as speedup over a purely data parallel implementation.
In all the examples, significant performance benefits are realized by compiling the programs with a mix of task and
data parallelism.

5.1. Fast Fourier transform

The FFT-Hist example from the previous sections consists of a 2D FFT (task-subroutines colffts and rowffts),
followed by a histogram. The 2D FFT is an interesting application in its own right; even though it shares much of the
same code with the FFT-Hist example, it scales differently, and thus its best mapping is quite different.

Figure 7 shows the speedups for different mappings of the FFT program relative to a simple data parallel mapping,
for different problem sizes. The numbers are relative only to numbers in the same row and are not comparable across

one module two modules
size pure data 2-way 4-way no 2-way 4-way

parallel replication replication replication replication replication
64 � 64 1 1.88 2.61 2.08 2.65 3.04
128 � 128 1 1.15 1.28 .91 1.12 1.29
256 � 256 1 1.09 1.16 .79 .94 1.08

Figure 7: Speedup of 2D FFT relative to a data parallel mapping.

rows. Notice that the optimal clustering depends on the problem size, but a higher degree of replication always
improves performance. For example, for the 128 � 128 2D FFT (a size frequently encountered) a 4-way replication
of two modules, as shown in Figure 8, minimizes execution time. This mapping differs from the mapping of FFT-Hist
in Figure 5.

As the problem size increases, the pure data parallel mapping begins to perform better relative to the mixed
mappings. The reason is due to differences in the scalability of inter-task communication; in our implementation, com-
munication between task-subroutines in the same module scales better than communication between task-subroutines
in different modules. The crucial point here is that the best mapping depends on the input size; no single approach
works best in all cases.

5.2. Narrowband tracking radar

The narrowband tracking radar benchmark was developed by researchers at MIT Lincoln Labs to measure the
effectiveness of various multicomputers for their radar applications [21]. It is a particularly interesting benchmark
for studying task parallelism because of its hard real-time requirements, and because the size of the input data set is
limited by physical properties of the radar sensor. The amount of available low-level data parallelism is limited, so
additional parallelism must come from higher-level task parallelism.
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Figure 8: FFT task graph and mapping

The radar program inputs data from a single sensor along c = 4 independent channels. Every 5 milliseconds, for
each channel, the program receives d = 512 complex vectors of length r = 10, one after the other in the form of an r � d
complex matrix A (assuming the column major ordering of Fortran). At a high-level, each input matrix A is processed
in the following way: (1) Corner turn the r � d input matrix to form a d � r matrix. (2) Perform r independent d-point
FFTs. (3) Convert the resulting complex d � r matrix to a real w � r submatrix, w = 40, by replacing each element
a + ib in the w � r submatrix with its scaled magnitude

�
a2 + b2 � d. (4) Threshold each element ajk of the submatrix

using a cutoff that is a function of ajk and the sum of the submatrix elements. The Fx version of the radar program
operating on a stream of m input data sets has the following form:

c$ begin parallel
do i = 1,m

call get(A)
c$ output: A

call compute(A,B)
c$ input: A
c$ output: B

enddo
c$ end parallel

The program consists of a parallel section with calls to two task-subroutines inside a loop that iterates m times.
Figure 9 shows the task graph. Task-subroutine get acquires the data from all 4 channels and sends it to task-
subroutine compute, a data parallel routine that performs steps (1)–(4) above. We will assume for purposes of
discussion that the get task-subroutine must run on one node, and that it must be assigned to the node that is
connected to the radar sensor. The data parallelism in the compute task-subroutine is in the form of a parallel loop
where each loop iteration operates on a single column of the corner-turned data set. Since there are only r = 10 of
these columns for each of the 4 channels, the amount of loop-level parallelism is quite small.

Since the get task-subroutine must run on exactly one node, we can only replicate the compute task-subroutine if
the two task-subroutines are clustered into different modules. The compute task-subroutine can use at most 10 nodes
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Clustering
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Figure 10: Speedup of radar for different degrees of replication.

efficiently, so we want to use up nodes by using replication. A mapping of the program that uses 4-way replication of
the compute task-subroutine is shown in Figure 9.

Figure 10 gives the measured performance of the Fx radar program when compiled with different degrees of
replication. The linear speedups illustrate the value of replication for programs like the radar program that operate on
small data sets.

5.3. Multibaseline stereo

The multibaseline stereo example is based on an algorithm developed at Carnegie Mellon for depth perception by using
more than two cameras [18]. It is an interesting program for studying task parallelism because it contains significant
amounts of both inter-task and intra-task communication [28], and the size of data sets is fixed. Our implementation
is adapted from a previous data parallel implementation written in a specialized image processing language [27].

Input consists of three m � n images acquired from three horizontally aligned, equally spaced cameras. One image
is the reference image, the other two are match images. For each of 16 disparities, d = 0 � . . . � 15, the first match image
is shifted by d pixels, the second image is shifted by 2d pixels. A difference image is formed by computing the sum
of squared differences between the corresponding pixels of the reference image and the shifted match images. Next,
an error image is formed by replacing each pixel in the difference image with the sum of the pixels in a surrounding
13 � 13 window. A disparity image is then formed by finding, for each pixel, the disparity that minimizes error.
Finally, the depth of each pixel is displayed as a simple function of its disparity. The Fx version of the stereo program
operating on a stream of s input data sets has the following form:
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c$ begin parallel
do i = 1,s

call dgen(R,M1,M2)
c$ output: R,M1,M2

do d = 0,15
call diff(R,M1,M2,DIFF,d)

c$ input: R,M1,M2
c$ output: DIFF

call error(DIFF,ERR(:,:,d),d)
c$ input: DIFF
c$ output: ERR(:,:,d)

enddo
call min(ERR,DISP)

c$ input: ERR
c$ output: DISP

enddo
c$ end parallel

Figure 11 shows the task graph. Task-subroutine dgen acquires three 256 � 240 images from the cameras. Each of
the 16 instances of the diff task-subroutine is a perfectly data parallel routine that converts the three input images to
a difference image. Each instance of the error task-subroutine is a data parallel routine that sums over a window of
pixels in the difference image to produce an error measure for each pixel. Each image is distributed by rows within
each task, so a node needs to exchange rows with its neighbors before the error image can be produced. The outputs
from the error tasks are passed to min, which applies a min-reduction to produce the disparity image, and then
displays the corresponding depth image.

A mapping of the stereo program that uses 4-way replication is shown in Figure 11. Figure 12 shows the measured
performance of the Fx stereo program compiled as 1 (i.e. purely data parallel), 2, and 4 replicated modules. The higher
throughput of the 4-way replicated case validates the decision to use replication. However, while a 4-way replication
roughly doubles the throughput, it roughly doubles the latency too. Depending on the requirements of a particular
application of the stereo program, this may or may not be a reasonable tradeoff. A system striving to minimize latency
would potentially arrive at a different mapping.

6. Comparison with related work

The approach that we have taken towards task parallelism can be summarized by the following key features:

� Task parallelism is integrated with a data parallel compiler, and data parallel subroutines are units for task
parallelism.

� Task parallelism is expressed with high level directives, and communication and task management is done by
the compiler.

Task parallelism that can be expressed in our system is constrained in two significant ways. First, communication
between task-subroutines is permitted only at procedure boundaries (through procedure arguments). Since we are
using data parallelism with its own compiler-generated communication inside subroutines, there is some justification
that explicit communication between task-subroutines is less important. This constraint considerably simplifies the
programming model and the compiler. Second, the mapping of tasks to nodes is fixed at compile time. This makes
it easier to generate efficient parallel programs with low execution overheads, but makes the method not suitable for
dynamic computations.

Coordination languages like Linda [5, 6] and Fortran M [14] provide a communication interface to build task
parallel programs, with facilities for more general inter-task communication. In contrast, Fx task parallelism is more
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restricted but is closely integrated with a data parallel compiler, and communication is exclusively generated by the
compiler.

Jade [19] and PYRROS [30] capture all parallelism as fine grain task parallelism; these systems create and schedule
tasks dynamically. A new language is developed in Jade, and fine grain directives are required in PYRROS. While
these systems can support a richer variety of parallelism, particularly dynamic programs, writing programs is more
cumbersome because a fine grain control of parallelism by the programmer is required, or because they do not use a
standard data parallel layer like HPF, which we found invaluable for ease of development and user acceptance.

HPF [15] can be used to develop task parallel MIMD programs using INDEPENDENT parallel loops, but no
support is available for expressing data transfers between tasks. Chapman et. al. [8] propose a similiar, but more
general and dynamic approach to task parallelism than ours. Fx emphasizes simplicity to obtain efficient code through
compilation; it will be interesting to compare the performance once results from an implementation are reported.

The node mapping problem introduced in the paper has been addressed in more detail in related publications[23, 24].
This problem is quite different from the many partitioning problems addressed in the literature (e.g., [20, 2, 11]) due to
one or more of the following reasons: (1) Task-subroutines are to be mapped to groups of nodes, not individual nodes.
(2) The computation and communication costs are functions of the number of nodes, not constants. (3) The objective
is to maximize throughput for a sequence of inputs, not to minimize execution time of a fixed set of tasks.

7. Conclusions

Both task and data parallelism are important for practical applications and are necessary to make the best use
of a parallel system. We demonstrate that a set of simple directives is sufficient to capture task parallelism for
representative applications in computer vision, signal processing, and multidisciplinary scientific computing. Without
task parallelism, it may be impossible to utilize a large number of nodes efficiently. Applications in these domains
often exhibit only a limited amount of data parallelism due to the fixed size of their input sets, are subject to real-world
latency constraints, or are structured so that individual components scale differently.

The Fx compiler is a prototype system that integrates both data and task parallelism, and our experience demon-
strates that task parallelism can be supported effectively in an HPF framework. The current design reflects our desire
to obtain a working system that can serve as a basis for further experimentation with the limited resources available.
The Fx compiler represents approximately a 10 person-year effort (this includes dealing with task as well as data par-
allelism). The design contains some limitations: task parallelism is subject to several constraints, and the programmer
has limited control over execution and communication. However the design and compiler have proven adequate for
interesting applications.

We take the approach that the user provides a high level specification of task parallelism via directives, and the
compiler manages the execution of tasks as well as communication between them. This extends one of the attractions
of HPF in that it frees the user from dealing with the details of communication in the parallel program. Furthermore,
this approach provides the compiler opportunities for optimizing communication and mapping of the program. Our
prototype demonstrates the benefits of task parallelism; programs with both styles of parallelism exhibit improved
performance over data or task parallelism alone. Fx presents a simple approach to task parallelism that considerably
enhances the power of a data parallel language like HPF.
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