
High-Level Data-Access Analysis
for Characterisation of (Sub)task-Level Parallelism in Java

R. Stahl, R. Paško, F. Catthoor, R. Lauwereins and D. Verkest
IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium

richard.stahl@imec.be

Abstract

In the era of future embedded systems the designer is
confronted with multi-processor systems both for perfor-
mance and energy reasons. Exploiting (sub)task-level par-
allelism is becoming crucial because the instruction-level
parallelism alone is insufficient.

The challenge is to build compiler tools that support the
exploration of the task-level parallelism in the programs. To
achieve this goal, we have designed an analysis framework
to evaluate the potential parallelism from sequential object-
oriented programs.

Parallel-performance and data-access analysis are
the crucial techniques for estimation of the trans-
formation effects. We have implemented support for
platform-independent data-access analysis and profil-
ing of Java programs, which is an extension to our earlier
parallel-performance analysis framework. The toolkit com-
prises automated design-time analysis for performance
and data-access characterisation, program instrumenta-
tion, program-profiling support and post-processing anal-
ysis. We demonstrate the usability of our approach on a
number of realistic Java applications.

1. Introduction

Future embedded systems confront the designer with
multi-processor architectures, which have performance and
energy-consumption constraints. For multi-processor sys-
tems in particular, two inseparable challenges exist. First,
the parallel tasks have to be identified and extracted. Sec-
ond, in the optimal case, a very good match should exist
between the tasks and the architecture resources. Any sig-
nificant mismatch in critical parts of the application will re-
sult in performance loss, a decrease of the resource utilisa-
tion, and reduced energy efficiency of the system.

From the designer’s point of view, three general ap-
proaches exist to solve those challenges: manual, automated
and tool supported. In the first case, the designer manually

translates the sequential program into an optimised paral-
lel program with respect to the system constraints. This can
lead to the most optimal solution, yet the solution is ded-
icated to a specific problem. In the second case, the de-
signer uses an automated tool, which leads to the easiest
solution for the designer, but the limitations on the current
state of the art tools do not allow to deal with realistic ap-
plications. Currently, the most realistic approach is the third
one that supports the designer’s manual effort with a num-
ber of analysis and transformation tools. The development
of these tools is an important step towards more automated
parallelism extraction and optimisation for embedded sys-
tems.

We propose a transformation framework for extraction
and optimisation of task-level parallelism from sequential
Object-Oriented (OO) programs with respect to architec-
tural and energy-consumption constraints. Such sequential
OO programs are becoming the most common form of code
that is produced for embedded multi-media applications to-
day (in C++ or Java).

As a crucial basis for our framework, we have imple-
mented parallel performance and data-access analysis tools
for Java programs. They automatically instrument the code
with respect to the designer’s input constraints, profile the
program, and interpret the profiling information. The tools
help the designer to understand the behaviour of a sequen-
tial or parallel program, to find the bottlenecks in execution,
and to interpret the analysis results.

The main contribution of our parallel performance anal-
ysis framework is that it provides the designer with
application-oriented platform-independent characteri-
sation of concurrent object-oriented programs, includ-
ing the effects of data communication. The framework
uses the underlying host platform to execute the pro-
gram, while the parallel program execution and the effects
of such an execution are simulated in a virtual paral-
lel machine on top of the host. The machine creates the
environment for (seemingly) parallel program execu-
tion (Figure 1). The machine represents an abstract model
of an arbitrary target platform, defined by a set of plat-

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

input program

parallel-execution

multi-processor platform

parallel behaviour
emulation

abstraction
of the architecture

time

T1

T1

T2 T3

T2

T3

idle

running

communicating

Figure 1. Concept of parallel-execution time.
The concept allows simulation of the parallel
program execution, communication and idle-
ness of its tasks. Moreover, it abstracts char-
acteristic features of the underlying platform.

form characteristics (task creation, task execution and
task communication). Thus, the performance analysis pro-
vides high-level platform-independent evaluation of the
parallel program performance.

The remainder of this paper is organised as follows. Sec-
tion 2 gives a concise overview of related work and shows
the distinguishing features of our approach. Section 3 de-
scribes the parallel performance framework we have imple-
mented; Section 4 describes the data-access analysis part of
the framework; Section 6 presents the experimental evalua-
tion of our tools, and finally, Section 7 gives concluding re-
marks.

2. Related work

The data-access and communication analysis for paral-
lel programs has been already researched in a number of
projects. We can identify two main categories: data-access
analysis for single-processor platforms with memory hier-
archy and communication analysis for parallel programs on
multi-processor platforms.

We have been partially inspired by work of Ding and
Zhong [4], who introduce platform-dependent, run-time
monitoring of data accesses. This approach is based on
compiler-directed instrumentation of single-threaded C pro-
grams. Moreover, the authors implemented the concept of
selective monitoring to improve the performance of the run-
time system.

A similar approach for data-access analysis has been in-
troduced by Bormans et al. [5] They use design-time data-
access analysis to identify all possible data-accesses in the

sequential C programs. Afterwards, the executable specifi-
cation is profiled and the data-access traces generated.

Leeman et al. [6] introduce a technique for data-access
profiling for power estimation. They use method-level data-
access summaries, which are inserted into the program code
at design-time so that the run-time system can gather the
data-access traces for arbitrary data types.

We distinguish from these approaches in the following:
first, we have introduced the concept of parallel execution,
which allows the designer to perform parallel program anal-
ysis without the previous mapping to the target platform,
and second, we have introduced the concept of parallel com-
municating tasks for which we analyse the computation as
well as communication cost.

In the area of parallel systems, the research focus
has been mainly on communication analysis and optimi-
sation. These approaches usually require explicit com-
munication between the tasks. However, few approaches,
targeting compilation for shared or distributed-memory sys-
tems, consider the communication analysis as a crucial part
of the performance metrics.

Miller et al. [12] have introduced Paradyn - parallel per-
formance measurement tools. It focuses on the profiling
and post-processing of profile information for long-running
large-scale programs written in high-level data-parallel lan-
guages. Paradyn uses a dynamic instrumentation technique
based on constraints given by the designer, while provid-
ing an interface between the low-level platform-dependent
objects and high-level language features. Haake et al. [13]
have introduced a similar approach, but they have imple-
mented profiling support for the Split-C programs with Ac-
tive Messages. It is based on fine grain communication pro-
filing while the program traces are post-processed off-line.

Another approach, implemented by Vetter [11] analyses
the performance of parallel programs with message passing
communication. The main contribution of this work is in
the classification of communication inefficiencies, i.e., it is
a post-processing phase of performance analysis that gives
the designer concise and interpreted performance measures.

Chakrabarti, et al. [7] introduce communication analysis
and optimisation techniques for High-Performance Fortran
programs. Even though the approach includes performance
analysis, the main focus is on the optimisation of the global
program communication.

We distinguish from the previous approaches by in-
troducing automated data-access analysis support for
high-level programming languages. Additionally, these ap-
proaches are intended for a platform-specific perfor-
mance analysis for particular machines, as opposite to our
platform-independent analysis.

We believe that the approach introduced by Tseng [8]
is one of the closest to our work. The technique focuses
on communication analysis for machine-independent High-

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

Performance Fortran programs, and provides application-
oriented analysis of the communication in the parallel pro-
grams. We, on the other hand, introduce design-time data-
access analysis for high-level concurrent object-oriented
programs. Moreover, we introduce the above mentioned
concept of parallel-execution environment with support for
performance and data-access profiling.

3. Parallel-performance analysis framework
for Java

The proposed performance analysis tool is based on a
concept of parallel-execution time (Figure 1), which allows
one to abstract specific architectural features of the plat-
form. The concept is used to simulate parallel execution of
program tasks while the program is actually executed on
the underlying platform, which does not need to be the final
target platform [18]. It allows one to reason about the par-
allelism and communication effects between the tasks with
respect to the physical parallelism of the target platform.

We have defined three platform optimisation criteria -
task-creation overhead, balanced task granularity and com-
munication overhead. The task-creation overhead is the ra-
tio between the task-creation interval and task execution
time. It defines the minimal task granularity, as demon-
strated for our approach in the experiment of subsection 6.1.
We have elaborated in detail on the balanced-task execution
in our previous work [18].

Herein, we focus mainly on the task communication
overhead (Section 4). It represents the amount of time a
task spends in transferring data. This time has to be negligi-
ble compared to task execution time as it also determines the
overall performance of the parallel program. This is demon-
strated in the experiments of subsection 6.2.

The output of the performance analysis framework al-
lows one to trade off those features of the parallel program
with respect to each other. Thus, the designer can explore
trade-offs in communication with respect to task execution
time, in task execution time with respect to communication
overhead.

We have implemented parallel performance analysis for
concurrent Java programs [18]. The tools work as follows.
Firstly, the program is automatically transformed based on
designer’s input constraints. This phase consists of two
complementary transformations: performance analysis and
data-access analysis, which are combined together to pro-
vide complete information on the overall performance of the
program. Secondly, the parallel program execution is simu-
lated and profiled. Finally, the profiling information is anal-
ysed and interpreted to provide the designer with a more
convenient form of profiling output.

We define a data-access model (Figure 2) that consists
of main execution thread, number of separate threads and

Shared Data

Main T1 Tn

RW RW RW

Figure 2. Data-access model: a model of an
abstract architecture, used in the design-time
data-access analysis to separate non-local
thread accesses to shared data from its lo-
cal ones.

shared data. The design-time data-access analysis resolves
all possible shared data which has to be fetched by a thread
to enable its correct execution. The implementation of the
transformation passes is based on the SOOT optimisation
framework [1]. We use the SOOT framework for program
analysis (method call graph construction, points-to analy-
sis) that serves as a base for our transformations.

We use the Profiler API as an interface between the
design-time instrumentation phase and the run-time profil-
ing support. The profiler gathers information on program
execution as well as data-accesses. The profiling support for
parallel programs is implemented as an extension to a Java
Virtual Machine (JVM) implementation.

The profile information is later parsed by the post-
processing phase of the performance analysis. The
post-processing consists of a critical-path analysis algo-
rithm, as presented in our previous work [18] and the
analysis of data-access traces. This information is essen-
tial for further exploitation of task-level parallelism.

4. Design-time data-access analysis and in-
strumentation

The data-access model (Figure 2) is used as a represen-
tation for modelling the accesses to the data shared between
different program tasks. Therefore, it serves as the concep-
tual base for the design-time data-access analysis.

The data-access model consists of the following com-
ponents: main-program thread, separate threads/tasks and
shared data. The main program thread represents the main
flow of the program execution. Moreover, all shared data be-
long to this thread are stored in the shared-data section. The
separate threads execute independently of the main thread.
They require an amount of data to be read from the shared-
data section before they can proceed with execution. On the
other hand, the threads generate an amount of data to be
stored and later accessed by other parts of the program. All
this data is of interest for our platform-independent analy-
sis.

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

Shared Data

T1

Shared Data

T1 R

a) shared-reference access b) explicit object copying

R R

timetime

R RR

Figure 3. Reference-type data access: a) ac-
cesses to shared reference-type data are not
taken into account, while b) explicit copying
of the object data is counted.

The designer defines the set of separate threads, and
the data-access analysis identifies all possible accesses per-
formed by these threads. To achieve this, the data-access
analysis traverses the corresponding parts of the program
representation based on a method-call graph. It identifies
all the data that are created outside the scope of this thread,
and are accessed within its scope. Based on the Java pro-
gramming language specification [17], access to these non-
local data can be performed only via method parameters,
class members and return statements. We will refer to these
Java program features as thread-shared features. The fea-
tures created within the scope of a thread are referred to as
thread-local features.

We can conceptually split the data-access analysis into
two parts: data-read and data-write analysis. The data-read
analysis of the thread-shared features works as a pure for-
ward traversal of the program representation, indicating all
potential data-read accesses of a particular thread. The data-
write analysis traverses the representation forward until it
finds any write access to a thread-shared feature. It starts
the backward traversal to identify the source of the data as-
signment and all accesses to this source. In the case of poly-
morphic method call the analysis resolves and analyses all
method call candidates while only one of them is selected
and profiled at run-time. Finally, data-access annotations
are added for the instrumentation phase. We strictly distin-
guish the annotation and the instrumentation phase that al-
lows one to implement different instrumentation policies re-
sulting in different types of data-access analysis.

Within the data-access analysis, we generally distinguish
three groups of data types: primitive types, reference types,
and array types. The primitive-type group consists of char,
short, integer, long, float, and double types. The reference-
type group holds references to any program classes and ar-
rays. As the Java arrays implement distinct concept within
the Java language, we consider them a special (sub-)group
with respect to the pure reference type.

The instrumentation phase modifies the program rep-

doMethodRead(M):
cloneIfNotTopLevel(M)
for each local M’ invoked in M:

doMethodRead(M’) // -- LocalCalls
for each static M’ invoked in M:

doMethodRead(M’) // -- StaticCalls
for each read parameter P

resolveTypeRead(M,P) // -- Params
for each read member F

addToMembersList(M,F) // -- Members
resolveTypeRead(M,F)

Figure 4. Algorithm for forward data-read
analysis

resentation with profiler specific code, generating the in-
strumented program code at the end. The instrumentation
uses the policy presented in [6]. Currently, we have imple-
mented support for data-access analysis of array-type data
and primitive-type scalars. We identify two possible sce-
narios for reference-type shared-data accesses (Figure 3):
a) the accesses to pure reference-type data are not consid-
ered as particular data accesses to the shared data region,
because the actual accesses only occur at other locations
in the code (where they are counted); b) explicit copying
of the referenced-object members is instrumented though.
Once a local copy of shared data is created, the data copy-
ing is annotated as shared-data accesses and the later local-
copy accesses are not taken into account. This approach can
eventually be extended with profiling support for high-level
dynamic-data types [6].

The data-access analysis algorithms are implemented re-
cursively because of their recursive nature. Even though we
will describe the algorithms separately the final implemen-
tation of the tool combines the three phases into a single re-
cursive transformation pass.

4.1. Forward data-read analysis

The data-read analysis identifies the read accesses to the
thread-shared features resulting in purely forward recursive
traversal of the program representation. The potential can-
didates for data-read access to thread-shared data are only
method parameters and class members (Figure 4).

The analysis consists of the following steps: analysis of
local and static method calls, analysis of method parameters
and analysis of class members accesses within this method
(Figure 4). The algorithm for the analysis starts by entering
the representation of one of the designer specified methods
(top-level methods):

1. First, a method clone is created for all methods except
the top-level methods. This isolates the representation
of the sub-graph specified by a top-level method, i.e.,

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

resolveTypeRead(M,P):
if(P is primitive) // -- Primitive

addPrimDataRead(M,P)
if(P is reference) // -- Reference

addRefDataRead(M,P)
if(P asigned to P’)
resolveRefTypeRead(M,P’)

if(M’ invoked on P)
doMethodRead(M’)

if(P is array) // -- Array
if(P assigned to P’)
resolveArrTypeRead(M,P’)

if(element E @idx of P read)
P is array id
addArrayDataRead(M,P)
resolveTypeRead(M,E)

Figure 5. Type resolving for data-read analy-
sis

each top-level method is an entrance point to a unique
extension of the original method-call graph, avoiding
collisions with the others.

2. Second, the algorithm recursively analyses all calls to
static and local methods of given class (Figure 4, Lo-
calCalls, StaticCalls).

3. Finally, once the flow of the algorithm returns, it anal-
yses accesses to all parameters and later accesses to
all class members. As shown in Figure 4 (Members), it
keeps a database of all members of all classes to avoid
feature aliasing, resulting in redundant data-accesses.

The algorithm returns when it reaches the end of
DoMethodRead method for a top-level method. Even-
tually, it can enter the same flow for another top-level
method. Each top-level method and its sub-graph is identi-
fied by a unique indentification tag.

The algorithm enters the resolveTypeRead method for
each of the method parameters and class members (Fig-
ure 5):

� Primitive type: all assignments from it are annotated as
data-read accesses (primDataRead). However, it can
also be passed to another method as a parameter. In
this case, a particular feature tag is set and the param-
eter is handled in the called method further. This situ-
ation is handled the same way for all three types.

� Array type: assignment from array type is annotated as
a simple reference-type data-read access. Assignment
from its element is annotated as a data-read access to
an array structure (ArrayDataRead). Each array has a
unique identification number, a separate counter at run-
time, and an information on array-index accesses.

� Reference type: all assignments from reference type or
calls to its methods are annotated as potential data-read

doMethodWrite(M):
for each local M’ invoked in M:

doMethodWrite(M’) // -- LocalCalls
for each static M’ invoked in M:

doMethodWrite(M’) // -- StaticCalls
for each written parameter P

resolveTypeWrite(M,P) // -- Params
for each written member F

addToMembersList(M,F) // -- Members
resolveTypeWrite(M,F)

R = returnStmt(M) // -- Return
resolveTypeWrite(M,R)

Figure 6. Algorithm for backward data-write
analysis

access (RefDataRead). Moreover, the analysis distin-
guishes the explicit data copying from general shared-
data accesses, as already explained before.

The forward analysis adds annotations to particular code
features, while traversing the cloned sub-program represen-
tation. These indicators are later used in the instrumentation
phase.

4.2. Backward data-write analysis

The backward data-write analysis traverses the represen-
tation forward until it finds any write access to a thread-
shared feature. Once the feature is identified, it starts the
backward traversal to identify the origin of the data assign-
ment. Furthermore, it inspects all potential accesses to this
feature. Thus, the data-write analysis uses the forward anal-
ysis to resolve all read accesses to thread-local features that
can be potentially assigned to thread-shared features. The
potential candidates are non-primitive method parameters,
class members, and return statements (Figure 6).

The backward analysis consists of the following steps:
analysis of local and static method calls, method param-
eters, class members within this method and return state-
ments. The algorithm for the analysis starts by entering the
representation of one of the top-level methods:

1. First, the algorithm recursively analyses all calls
to static and local methods of given class (Fig-
ure 4, LocalCalls, StaticCalls). Those method can
assign new values to non-primitive-type shared fea-
tures (reference-type parameters and members).

2. After returning from the recursive analysis of called
methods, the algorithm analyses all write accesses to
all parameters and later accesses to all class members.
As is shown (Figure 6, Members), the algorithm up-
dates the database of all members of all classes to avoid
data aliasing.

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

resolveTypeWrite(M,P):
if(P is primitive) // -- Primitive

addPrimDataWrite(M,P)
if(P is reference) // -- Reference

if(P asigned from P’)
top-level-local = findOriginOfRef(M,P’)
if(top-level-local)

addRefDataWrite(M,P)
if(M’ invoked on P)
doMethodWrite(M’)

if(P is array) // -- Array
if(P assigned from P’)
resolveArrTypeWrite(M,P’)

if(element E @idx of P written)
P is array id
addArrayDataWrite(M,P)
resolveTypeRead(M,E)
resolveTypeWrite(M,E)

findOriginOfRef(M,R’): // -- Backward
if(R’ is local)

return top-level-local
if(R’ is member)

resolveTypeRead(M,R’)
resolveTypeWrite(M,R’)
return not(top-level-local)

if(R’ is parameter)
M’ = callerOf(M)
return findOriginOfRef(M’,R’)

Figure 7. Type resolving for data-write analy-
sis

3. Finally, the algorithm analyses the return statements by
resolving the type of the data returned.

The algorithm enters the resolveTypeWrite method for
all of the method parameters, class members and returned
data to handle the different cases of feature types adequately
(Figure 7):

� Primitive type: if this feature is identified as member
or returned, all assignments to it within the method are
annotated as data-write access (primDataWrite). How-
ever, it is important to find the source of this data. If
the data origin is a parameter of a top-level method, no
data-write access is necessary.

� Array type: if the feature is identified as member or re-
turned, all assignments to it are annotated as simple
reference-type data-write accesses. Moreover, the ac-
cesses to its origin are also to be recursively analysed
(resolveArrTypeWrite).

Assignment to an array element is annotated as po-
tential data-write access to the array structure (Array-
DataWrite). Later, the algorithm analyses all potential
accesses to the origin of the array-element assignment
(resolveTypeRead and resolveTypeWrite for array ele-
ment E).

� Reference type: if this feature is identified as member
or returned, all assignments to it are annotated as po-
tential data-write access (RefDataWrite). However, we
have to find the origin of the reference type data (find-
OriginOfRef). Once the program representation is tra-
versed in a backward fashion and the origin is marked
as top-level-local (local within the scope of top-level
method).

The backward traversal (Figure 7,findOriginOfRef)
recursively searches for any potential origin of the
data assignment. If the data reference is local to given
method, a data-write access is annotated. In the case
that the data reference origin is a class member the
algorithm starts forward traversal to resolve all read
and/or write accesses on the reference origin. Finally,
if the reference origin is identified as a method param-
eter a new backward traversal is started in the caller to
this method. Thus, all possible cases are handled.

The backward analysis, as the forward analysis, adds
annotations to particular code features, while traversing
the cloned sub-program representation. The annotations are
used in the instrumentation phase.

4.3. Instrumentation

The instrumentation phase of the data-access analysis
modifies the program representation with profiler specific
code based on annotations from the previous phases. It
uses the instrumentation technique presented in [6]. Cur-
rently, the instrumentation processes the code for accesses
to Java arrays and primitive-type scalars resulting in an ap-
propriate collection of data-access information in the pro-
filer. The annotations for primitive-type read and write ac-
cesses are transformed into the actual profiler-specific code
for primitive-type data-access profiling, using data-access
counter number 0 (drd(0), dwr(0)).

The annotations for array-type data uniquely identify
each array within the thread-local scope, inserting unique
data-read and data-write access counters for each thread
and its accessed arrays separately. Moreover, the instru-
menter adds information on the array index to the pro-
gram representation, using drd(ArrayID, ElementIndex) and
dwr(ArrayID, ElementIndex) calls to profiler, which allows
generation of detailed array-access traces.

The annotations for reference-type accesses are handled
depending on the situation in the program code, as ex-
plained in Section 4. The instrumenter inserts an appropri-
ate code for the explicit data copying of all data members
of given object (Figure 3-b)).

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

data-access
prof.drd(0) read access to primitive type
prof.drd(id,idx) read access to array id index idx
prof.dwr(0) write access to primitive type
prof.dwr(id,idx) write access to array id index idx

Table 1. Profiler API: extension for data-
access analysis

5. Run-time profiling support

5.1. Interface to the profiler

All the features described above are made available to
the designer at Java source-code level via the Profiler API.
The features for parallel program performance analysis
were presented in our previous approach([18], ExtAPI).
We extend the profiler interface with the data-access sup-
port (Table 1). The Profiler API is implemented completely
in Java.

5.2. Parallel java profiler

The parallel profiler is the essential element of the per-
formance analysis framework. It implements the concept
of parallel-execution time [18]. Moreover, we extend that
functionality with the above described support for data-
access profiling.

The profiler uses a modified implementation of the JVM
to execute the profiled program. Each task/thread of the pro-
gram is assigned a separate timer and an unique identifica-
tion number to correctly propagate the execution-time infor-
mation of the simulated parallel execution [18]. The profiler
executes the program and collects information on program
execution and accesses to shared-data section. The infor-
mation on shared-data accesses is stored in a special data-
access counters. Thus, each separate thread has its own set
of these counters.

If a detailed report mode is specified, the profiler pro-
duces complete program execution trace (Figure 8). It con-
tains information about synchronisation between different
threads, methods called within the threads and data read and
write accesses. For each of these events the profiler reports
the current parallel-execution time stamp and type of oper-
ation performed. In case of data-access operation, it reports
type of data accesses and access type. If an array element is
accessed, the array identification number and array-element
index are reported.

Compared to our previous work, we use Jikes Research
Virtual Machine [2] for implementation of the profiler. The
main reason for this change was bad performance of the pre-
vious interpreter.

time

T1

T2

Main

R R R

R R R

W

W

Figure 8. Program trace: the profiler gener-
ates program trace consisting of threads ex-
ecuting, operations on threads, synchronisa-
tion and data accesses to the shared data
(Figure 2).

5.3. Parallel performance metrics

The post-processing phase of the performance analysis
consist of a critical-path analysis algorithm presented in
previous work [18] and data-access trace interpretation.

The data-access trace interpretation consists of annota-
tion of different types of data accesses with a performance
cost - in this case, data access time to the shared data. For
annotation of shared data acccesses with realistic figures,
we use the Micron SDRAM model [3]. The cost of ran-
dom access to the shared data is 72ns, while the more opti-
mistic page-mode access requires only 8ns. This approach
can be further extended with data-reuse modelling shifting
the trade-off towards more optimistic page-mode access.
Moreover, a burst-mode access to the shared data can be
introduced if the corresponding data-access trace has been
identified.

6. Experimental results

In experiments accomplished we have focused on the
usability of the proposed framework for an evaluation of
different parallel alternatives of realistic programs. We use
the host platform and corresponding memory model[3] to
obtain the absolute timing information for program execu-
tion and data communication, while the main interest of our
platform-independent program characterisation is in the rel-
ative comparison between them.

6.1. Experiments analysing task-creation over-
head

For the task-creation overhead we have performed a
number of simple tests. The results obtained show that the
task-creation overhead ranges from 85�s to 725�s. We con-
clude that the task creation overhead for our model is negli-
gible if the actual task-execution time is significantly bigger
than the average task-creation time (331 �s). It will be seen
in the next subsection that a typical task-execution time, for
embedded multimedia applications, is in the range of tens
to hundreds of milliseconds.

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

th t[ms] ����[ms] ���[ms] id #rd #wr

1 3318 - - - - -

4 1516 - - x,5 - -
9.51 1.06 0,8 132k 13
21.4 2.38 1,8 131k 166k
9.48 1.05 0,9 132k 15
14.3 1.58 1,9 - 198k
0.60 0.07 0,10 8260 7
1.31 0.15 1,10 - 18k
9.48 1.05 0,11 132k 121
17.5 1.94 1,11 - 242k

Table 2. Results for 3D program

th t[ms] ����[ms] ��� [ms] id #rd #wr

1 36927 - - - -

2 18717 2870 319 0,1 24.7M 15.2M
79.9 8.88 1,1 1.1M -
8.50 0.94 2,1 - 118k
398 44.2 3,1 5.5M -
8.49 0.94 7,1 - 117k
43.9 4.88 9,1 610k -
81.8 9.08 11,1 568k 568k
1439 160 12,1 2.0M 27.1k
3028 336 13,1 2.1M 40M
49.0 5.45 47,1 - 681k
637 70.8 48,1 - 8.9M

Table 3. Results for MPEG program

6.2. Experiments exploring program performance
and data communication metrics

For the evaluation of the performance analysis frame-
work we have used a 3D application [15], an MPEG
video player [14] and the following set of applica-
tions from the Java Grande Forum Thread Benchmark
Suite [16]: JGFCrypt, JGFSparseMatMult, JGFRay-
Tracer and JGFMonteCarlo.

In case of the 3D application, we have used scenario
(local-view texture decoding) that takes relatively short time
and shows the typical program behaviour. The communica-
tion (Table 2) between the threads and the shared data re-
gion is relatively low (approx. 6% of total execution time).

th t[ms] ����[ms] ��� [ms] id #rd #wr

1 5060 0 0 0,5 8 -
432 48 1,4,5 6M -
2808 312 2,5 39M -

2 2775 0 0 0,x 8 -
216 24 1,4,x 3M -
1404 156 2,x 19.5M -

4 1624 0 0 0,x 8 -
108 12 1,4,x 1.5M -
702 78 2,x 9.75M -

Table 4. Results for JGFCrypt

th t[ms] ����[ms] ��� [ms] id #rd #wr

1 20071 3600 400 0,3-7,5 50M -
7200 800 2,5 50M 50M

2 10147 3600 400 0,3-7,x 25M -
3602 400 2,x 25M 25M

4 5207 901 100 0,3-7,x 12.5M -
1802 200 2,x 12.5M 12.5M

Table 5. Results for JGFSparseMatMult

th t[ms] ����[ms] ��� [ms] id #rd #wr

1 108648 8984 998 0,5 85.6M 39.2M
7502 834 1,5 104M -
159 18 2,5 2.21M -

2 54466 4489 499 0,x 42.8M 19.6M
3752 17 1,x 52.1M -

79 9 2,x 1.10M -

4 27398 2238 249 0,x 21.3M 9.76M
1868 208 1,x 25.9M -

40 4 2,x 550k -

Table 6. Results for JGFRayTracer

We have profiled two scenarios: the first scenario is the orig-
inal single-threaded program. Its execution time is approx-
imately 3.3 seconds. The second scenario is a parallel ver-
sion of the same program using four threads. The resulting
execution time (without communication overhead) is ap-
proximately 1.5 seconds. The amount of data accesses is
in the last two columns (namely ��� and ���). For the
calculation of communication time we use two data-access
modes: random-access mode ��������: data-access takes
72ns, and page-access mode ��� ����: data-access takes
8ns. The array index (��) consists of thread- and counter-
identification number. Except for counter zero, the counters
with higher identification numbers correspond to particular
arrays in the program.

Finally, we interpret the results of the performance anal-
ysis(Table 8): we calculate program communication time
(��) in two ways. Either the data accesses to the shared
data are fully overlapping (���� - concurrent access) or
the shared-data accesses are sequential (���� - sequential
access). The total execution time (�) is a sum of execu-
tion time and data-communication time. Thus, the achiev-
able speed-up ranges from the speedup for random data-

th t[ms] ����[ms] ��� [ms] id #rd #wr

1 50355 18.7 2.08 0,5 90k 170k
720 80 2,3,5 - 10M

2 27278 9.36 1.04 0,x 45k 85k
360 40 2,3,x - 5M

4 16152 4.68 0.52 0,x 22.5k 42.5k
180 20 2,3,x - 2.5M

Table 7. Results for JGFMonteCarlo

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

program ��������� ���������� ����� ���� ���������� �� ��� ����

����	 3.44 30.9 1519 1546 2.18 2.18 2.15
���
	 9.28 83.6 1525 1600 2.18 2.18 2.07

����� 962 8653 19679 27370 1.97 1.88 1.35

	
��� 204 1836 2979 4611 1.82 1.70 1.10
	
����	 102 918 1726 2542 3.12 2.93 1.99
	
���
	 306 2754 1930 4378 3.12 2.62 1.16

��
��� 1800 1980 11947 29954 1.98 1.68 0.67
��
����	 800 7208 6007 12415 3.85 3.34 1.62
��
���
	 2400 21624 7607 26831 3.85 2.63 0.75

����� 925 8320 55391 62786 1.99 1.96 1.73
������	 465 4183 27863 31581 3.97 3.90 3.44
�����
	 1385 12466 28783 39864 3.97 3.77 2.73

�	�
��� 81 729 27359 28007 1.85 1.84 1.80
�	�
����	 40.5 365 16193 16517 3.12 3.11 3.05
�	�
���
	 120 1095 16272 17247 3.12 3.09 2.92

Table 8. Interpreted analysis results: ������������� (X - number of threads, ca/sa - concurrent or sequen-
tial data-access mode), communication time, total-execution time and speedup for zero/page/random-
mode communication.

access model (����) to the speedup for page-mode data-
access model (��). For comparison reasons we present also
speedup for an ideal reference (�� - no data-communication
overhead).

The MPEG video player is an application which uses a
separate thread for execution of the video decoder. The re-
sults (Table 3) show that it is a heavily data-dominated ap-
plication. The analysis identifies a number of arrays inten-
sively accessed by the video-decoding thread. Based on the
interpretation of the analysis results (Table 6.2, ��	
�),
we see that in case of random data-access mode, the com-
munication corresponds to 31% of the total execution time.
Thus, compared to the ideal reference (�� = 1.97), the
speed-up is considerably degraded (���� = 1.35).

We have analysed two programs (JGFCrypt and JGF-
SparseMatMult) from section 2 and two other (JGFRay-
Tracer and JGFMonteCarlo) from section 3 of the Java
Grande Forum Thread Benchmarks, using single-thread,
two-thread and four-thread configuration. The JGFCrypt
benchmark program is a data-dominated application (Ta-
ble 4), e.g., in four-thread configuration each thread per-
forms approximately 10 million data-read accesses and
1.5 million data-write accesses. Thus, the overall perfor-
mance of the program is heavily dependent on the data-
access mode (Table 6.2): the achievable speedup, in the
best case scenario (��	 at ������� - concurrent, page-
mode data access), is approximately 2.93, while it drops
down to 1.16 for the worst case scenario (���� at �������
- sequential, random-mode data access). As can be seen
from the results, the JGFSparseMatMult benchmark pro-
grams is another data-dominated application. Moreover, the
JGFSparseMatMult worst-case scenario (Table 6.2, �
 at
������) is 33% slower then the sequential execution. The
JGFRayTracer and JGFMonteCarlo benchmark programs

DAA start
methods + sparsematmult.SparseRunner.run
#DAA ENTERING sparsematmult.SparseRunner.run
#DAA this invoke @ run
...
#DAA going params @ run
...
#DAA going members @ run
...
#DAA EXITING sparsematmult.SparseRunner.run
#DAA #counters: rd = 10

wr = 1
#DAA #methods = 1
#DAA time: 245 [ms]

Figure 9. A fraction of the report from the
design-time data-access analysis tool.

are more complex applications yet less data-dominated. The
JGFRayTracer communication time ranges from 1.7% (��	
at ����� or �������) to 31.3% (���� at ��������) while
it is only 0.3 - 6.3% for the JGFMonteCarlo program. Thus,
the final speedup for those programs does not depend on
the data-communication as heavily as in the previous exam-
ples.

6.3. Evaluation of the analysis tools

We have evaluated the usability of our tool from de-
signer’s point of view and computational complexity of the
design-time algorithms. The current user interface is batch-
based and the only required input from designer is a list of
threads/methods to analyse. The tool automatically analy-
ses the data-accesses, instruments the code, profiles the pro-
gram and generates reports. The design-time data-access
analysis tool generates a report on assignment of method

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

============ statistics =============
VM thd[8] = 4477709 type java.lang.Thread
VM cnt[8,1] = 4430072
VM drd[8,0] = 12495801
VM drd[8,1] = 200
VM drd[8,7] = 12495400
VM main[5] = 5207051
VM cnt[5,1] = 5141155
VM drd[5,0] = 12459201
VM drd[5,7] = 12458800
VM drd[5,2] = 12458600
...

Figure 10. An example report on program ex-
ecution (JGFSparseMatMult).

program ������[ms] #methods #rd #wr

3D 3819 63 43 133
MPEG 33798 41 436 337
Crypt 1266 2 22 8

MatMulti 245 2 10 1
RayTracer 4927 29 134 66
Montecarlo 1137 23 17 19

Table 9. Data-access analysis: program, transfor-
mation time, number of sub-program methods,
identified read and write accesses.

timers to the set of sub-program methods, assignment of
data-access counters to particular shared data elements (Fig-
ure 9)). An example of the generated profiling report is
shown in Figure 10). The tool also provides statistics on its
execution, including transformation time, number of anal-
ysed methods, number of identified potential read and write
accesses (Table 9).

The upper bound of computation complexity of the data-
access analysis algorithms is ������� for forward pass
and ���� � �� for backward pass, where � is number
of methods selected by designer, �� (��) is number of
methods access from selected methods for data read (resp.
write) and �� (��) is number of shared data which are read
(resp. written) within the scope of selected methods. How-
ever, we have not observed this computational complexity
in behaviour of the tool for tested programs.

The performance and data-access analysis framework al-
lows analysis of complex Java applications, providing de-
tailed insight into their performance and data-access char-
acteristics.

7. Conclusions

We have introduced the performance and data-access
analysis part of a transformation framework for exploration
of task-level parallelism in sequential object-oriented pro-

grams. The main difference of our approach compared to
related work is the introduction of a performance-analysis
technique that implements the concept of parallel execu-
tion time. We have extended this approach with shared-data
model for data communication between the program tasks.
This allows one to simulate the behaviour of the parallel
program with respect to the architectural constraints of the
target platform. To increase efficiency of profiling, we have
implemented automatic performance and data-access anal-
ysis and instrumentation of Java programs.

We have demonstrated the potential of our technique on
a number of realistic test applications, showing its suitabil-
ity for exploration and analysis of the parallel program per-
formance on the target multi-processor platforms.

References

[1] Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co,
P.: Soot - a Java Optimization Framework, Proc. of CASCON, 1999

[2] Jikes Research Virtual Machine: http://www-
124.ibm.com/developerworks/oss/jikesrvm/

[3] Micron: Calculating Memory System Power For DDR,
www.micron.com, TN-46-03

[4] Ding, C., Zhong, Y.: Compiler-Directed Run-time Monitoring of Pro-
gram Data Access, Proceedings of the workshop on Memory system
performance, Berlin, Germany, pp.1-12, 2003

[5] Bormans, J., Denolf, K., Wuytack, S., Nachtergaele L. and Bolsens,
I.: Integrating System-Level Low Power Methodologies into a Real-
Life Design Flow, Proceeding of IEEE Workshop on Power and Tim-
ing Modeling, Optimization and Simulation (PATMOS), Kos, Greece,
pp.19-28, 1999

[6] Leeman, M. et al.: Power Estimation Approach of Dynamic Data Stor-
age on a Hardware Software Boundary Level, Proceeding of IEEE
Workshop on Power and Timing Modeling, Optimization and Simu-
lation (PATMOS), Torino, Italy, pp.289-298, 2003

[7] Chakrabarti, S., Gupta, M., Choi, J.D: Global Communication Anal-
ysis and Optimisation, Proceedings of Conference on Programming
Language Design and Implementation, pp.68-78, 1996

[8] Tseng, C-W.: Communication Analysis for Shared and Distributed
Memory Machines, Proceedings of the Workshop on Compiler Op-
timizations on Distributed Memory Systems, 1995

[9] Mellor-Crummey, J., Fowler, R., Whalley, D.: Tools for Application-
Oriented Performance Tuning, Technical Report TR01-375, Rice Uni-
versity, 2001

[10] Adve, V.S. and Vernon, M.K.: A Deterministic Model for Parallel
Program Performance Evaluation, Technical Report TR98-333, Rice
University, 1998

[11] Vetter, J.: Performance Analysis of Distributed Applications using
Automatic Classification of Communication Inefficiencies, Proceed-
ing of ACM International Conference on Supercomputing, Santa Fe,
USA, 2000

[12] Miller, B.P., et al.: The Paradyn Parallel Performance Measurement
Tool, Journal IEEE Computer, vol.28, num.11, pp.27-46, 1995

[13] Haake, B., Schauser, K.E., Scheiman, C.: Profiling a parallel lan-
guage based on fine-grained communication, Proceedings of the
ACM/IEEE conference on Supercomputing, Pittsburgh, USA, 1996

[14] Anders, J.: MPEG-1 player in Java, http://rnvs.informatik.tu-
chemnitz.de/ jan/MPEG/MPEG Play.html

[15] Walser, P.: IDX 3D engine, http://www2.active.ch/ proxima
[16] Java Grande Forum Benchmarks,

http://www.epcc.ed.ac.uk/javagrande/javag.html
[17] Gosling, J., Joy, B., Steele, G. and Bracha, G.: The Java Language

Specification, Second Edition Addison-Wesley, 2000
[18] R.Stahl et al.: Performance Analysis for Identification of (Sub)task-

Level Parallelism in Java, Proceedings of SCOPES’03, Austria, 2003

Proceedings of the Ninth International Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS’04)

0-7695-2151-7/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

