
SystemC Object-Oriented Extensions and Synthesis

Features

Eike Grimpe1, Bernd Timmermann, Tiemo Fandrey, Ramon Biniasch, Frank Oppenheimer
OFFIS Research Institute

Escherweg 2, 26121 Oldenburg - Germany
1Phone: +49 441 97 22-2 28 - Fax: +49 441 97 22-2 82

E-mail: Eike.Grimpe@offis.de

Abstract

In this paper we present an overview about the object-oriented hardware description language SystemC-
Plus that is based on SystemC. First we discuss the chances lying in the application of object-oriented
techniques for designing hardware. Afterwards we give an introduction into SystemC-Plus’ basic fea-
tures and depict their use by means of some descriptive examples. And finally we will give a brief
overview of the synthesis framework that is necessary to make hardware starting from object-oriented
models.

1 Introduction

Managing the steadily increasing complexity of embedded systems is today one of the most serious
challenges in the area of electronic design automation (EDA). While the technological possibilities
and together with them the requirements on systems grow, the designer’s productivity does not keep
pace, widening the so-called design gap. One major problem in the existing design process is the step
from the initial specification to the first implementation. This is in particular a problem for hardware,
since system specification often starts with a C/C++ description of the system, mostly referred to as
”golden model”. While several compilers and development environments exist, helping to bring the
software parts of a system to a specific target architecture, the step from the initial specification to
an implementation in hardware is still a huge and complicated one. This step does not only require
to manually transform the initial C/C++ hardware description into a behavioral equivalent hardware
description in an HDL like VHDL or Verilog, but it means also to deal with the different characteristics
of hardware and software.

Since SystemC [14, 13, 9] is based on C/C++ it is no longer necessary to translate an initial C/C++
description into another language, but though the design languages are the same, the semantics may
strongly differ. The effort of transforming a plain C/C++ description into a behavioral equivalent and
synthesisable SystemC description nearly stays the same as when translating into VHDL. The main
reason for that and one of the most important disadvantages of SystemC is, that it does not provide
a higher level of abstraction for modelling as used from VHDL or Verilog when targeting automated
synthesis. All high level language constructs like non-primitive channels that are offered by SystemC
must be refined manually, down to a cycle accurate hardware model that uses signals for communica-
tion. This is not just a specific problem of the langauge itself but also a result of existing synthesis
techniques and tools. SystemC-Plus [1, 5] and the accompanying synthesis framework are lined up, to
overcome this problem, and to provide the designers with the possibility to use powerful object-oriented
techniques for the development of hardware combined with automatic hardware synthesis.

2 Perspectives

One may argue why to use object-oriented techniques for modelling hardware. But why do program-
mers today mainly use programming languages like C++, JavaTMand other object-oriented languages
and not still FORTRAN or even assembler? The answer is, that object-orientation is a powerful in-
strument for mastering and implementing complex systems. Of course, there are differences between

the natures of software and hardware, but many problems are similar and thus solutions to solve them
can be adopted. The differences may require for specific flavors of object-oriented modelling, however,
object-orientation can not also be very helpful in mastering complex software but also in mastering
complex hardware and even combined hardware/software systems.

Since the general advantages that are offered by object-orientation - and not to forget also its
disadvantages - have been already discussed in full detail for software applications, we do not want to
repeat these discussions in this work. But what we want to point out from these considerations is, that
classes are a first class concept for reuse, that classes together with inheritance are a fine concept for
modelling new data types and for organizing and encapsulating data, and finally that polymorphism
based on a class and inheritance concept is a powerful instrument to make an implementation flexible
and easy at the same time. These observations mainly motivate our researches on the field of object-
oriented hardware design.

3 SystemC-Plus

SystemC-Plus was developed within the framework of the European Commission’s IST FP5 project
ODETTE [8]. It is completely based on SystemC, but its main focus lies on synthesis. The SystemC
synthesis subset that is accepted by synthesis tools like the CoCentric R© SystemC Compiler [11, 12]
can be seen as a subset of SystemC-Plus. Based on this subset object-oriented constructs accompanied
by modelling guidelines are added. But only such object-oriented constructs are introduced, for which
we have a clear synthesis semantics. Section 4 will give a brief overview of our synthesis concepts.

Because of focussing on synthesis, SystemC-Plus does not just simply mean to combine C++ with
SystemC. Of course, the basic class concept of C++ is adopted by SystemC-Plus, but its polymorphism
mechanism could not be adopted one-to-one. The problem of C++’ polymorphism concept is, that
it only works by means of pointers, and pointers are, despite from a very few exceptions, banned
from SystemC-Plus, as well as dynamic memory allocation and de-allocation. The reason is the static
nature of hardware and the problem of efficient pointer synthesis, which we regard not to be solved.
For the same reason also other C++ constructs were restricted in use or even banned, because of not
finding an appropriate way to synthesize them.

Building a SystemC-Plus simulation model is as easy as for SystemC. The SystemC-Plus description
does only have to be compiled with a common more or less ANSI C++ compliant compiler like the
gcc, that is available on a variety of platforms. The resulting executable can then directly be run
for simulation. Including the SystemC class library is also necessary for SystemC-Plus since it only
augments SystemC by additional features. Some of these features, like polymorphic (see 3.1.2) and
global objects (see 3.1.3) additionally require to include the so-called OOHWLib (Object-Oriented
HardWare Library), that was also developed within the framework of ODETTE. Figure 1 illustrates
how simulation and synthesis start from an object-oriented SystemC-Plus description.

3.1 Basic Features

SystemC-Plus is mainly characterized by supporting the following high level modelling constructs for
synthesis:

• classes and objects, also including the concept of inheritance

• polymorphic objects

• global objects, for modelling shared resources and communication

• templates, for implementing highly parameterizable components

We will discuss each of this features in more detail in the following sections and demonstrate their use
by means of simple but descriptive examples.

SystemC

table
Execu−

Synthesiser

Object−orientedObject−oriented

SystemC

ODETTE

ModelModel
Hardware

Library
Class

table

Synthesisable

ODETTE

Execu−

Synthesiser

Library
Class

Synthesisable

Hardware

SystemCSystemC

Logic Synthesis

Simulation

OOHWLib

Logic Synthesis

Simulation

OOHWLib

compilecompile

Figure 1: Synthesis and simulation starting from SystemC-Plus

3.1.1 Classes and Objects

As used from C++, SystemC-Plus allows the user to model new data types by means of classes.
Classes are a first class concept for modelling reusable components. Take for example the complete 1

class declaration of a simple counter in the following:

Listing 1: Sample implementation of a counter class

1 class Counter{
2
3 public:
4 Counter(const unsigned int lowerBound = 0,
5 const unsigned int upperBound = 255,
6 const unsigned int initialValue = 0) {
7 m counter = initialValue;
8 m lowerBound = lowerBound;
9 m upperBound = upperBound;

10 m overflow = false;
11 }
12
13 bool overflow() {
14 return(m overflow);
15 }
16
17 void clearOverflow() {
18 m overflow = false;
19 }
20
21 void setLowerBound(
22 const unsigned int lowerBound) {
23 m lowerBound = lowerBound;
24 }
25
26 void setUpperBound(
27 const unsigned int upperBound) {
28 m upperBound = upperBound;
29 }

30 void reset() {
31 m counter = m lowerBound;
32 m overflow = false;
33 }
34
35 unsigned int getValue() {
36 return(m counter);
37 }
38
39 void count(
40 const unsigned int stepSize = 1) {
41 unsigned int diff =
42 m upperBound − m counter;
43 if (diff < stepSize) // counter overflow
44 {
45 m counter =
46 m lowerBound + (stepSize − diff) − 1;
47 m overflow = true;
48 } else {
49 m counter += stepSize;
50 }
51 }
52
53 private:
54 unsigned int m lowerBound;
55 unsigned int m upperBound;
56 unsigned int m counter;
57 bool overflow;
58 };

1Note that the implementation is not a very safe one, because it would be possible to set the counter to a value lower
than the specified lower bound. Such cases may be handled by exceptions, which must be switched off for synthesis, since
we are not performing synthesis of exception handling.

It is not only possible to easily reuse the counter in a variety of different systems, but its imple-
mentation also satisfies varying flavors of handling the counter and also different requirements, like a
flexible step size and counting range. Though the above example may not be very impressive for a
C++ programmer, the possibility to use it for modelling hardware is impressive. Instances of class
Counter shown above could be used in every SystemC-Plus model for direct synthesis.

One thing, that must be clearly stated is, that objects in contrast to modules are always passive.
That means they must be triggered from outside to be active because they lack an own thread of
control. If the counter modelled in the above example should count events, its count() method must
be triggered within a process, that is sensitive to these events. Active components can only be modelled
by means of modules. However, objects can ease the modelling of the functionality that is inherent in
a module as illustrated by Listing 2. In the listing an instance of the Counter class is used to count
clock-events. After each 256 events - according to the default constructor arguments - an overflow
is indicated and an alarm signal is set for one clock cycle. Assume countProcess() to be declared as
synchronous process - an SC CTHREAD - in some SystemC module.

Listing 2: Using class Counter
1 void countProcess() {
2 Counter cntr;
3 if (reset == true) {
4 cntr . reset ();
5 alarm.write(false);
6 }
7 wait();
8 while (true) {
9 cntr .count();

10 if (cntr .overflow ()) {
11 alarm.write(true);
12 cntr .clearOverflow();
13 } else {
14 alarm.write(false);
15 }
16 wait();
17 }
18 }

3.1.2 Polymorphism

Polymorphism in SystemC-Plus works by means of so-called polymorphic objects. A polymorphic
object can change its class type dynamically during runtime. The main difference between the native
C++ polymorphism mechanism and SystemC-Plus’ polymorphic objects is, that the latter ones provide
their own state space. That means, that an assignment to a polymorphic object does not simply mean
to bend a pointer from one object to another, but to assign a real copy of the source object to the
target object. It was necessary to introduce this special flavor of polymorphism, since we have a clear
synthesis semantics for it, but not for the C++ mechanism. The main problem in the case of the native
C++ polymorphism mechanism is the handling of pointers, which we do not claim to be efficiently
synthesisable as already mentioned previously.

Polymorphism is an extremely powerful object-oriented feature. Its usefulness can be best demon-
strated by means of a example. First, assume the simple class hierarchy, shown in the following Figure,
that models arithmetic operations.

leftOp : int
rightOp : int

execute() : int execute() : int

Add

ArithOperation

Nop

execute() : int

Subtract

setRightOp(int) : int
setLeftOp(int) : int

execute() : int

Figure 2: Arithmetic operations modelled as class hierarchy

This way of modelling arithmetic operation in an object oriented way together with polymorphism
now allows to implement very easy a very flexible arithmetic unit, as demonstrated next:

Listing 3: A polymorphic arithmetic unit
1 SC MODULE(ArithmeticUnit) {
2 sc in clk clock;
3 sc in< bool > reset;
4 sc in< PolyObject< ArithOperation > > operation;
5 sc in< int > leftOp;
6 sc in< int > rightOp;
7 sc out< int > result;
8
9 void executeOp() {

10 PolyObject< ArithOperation > op;
11 if (reset == true) {
12 result .write (0);
13 }
14 wait();
15 while (true) {
16 op = operation.read();
17 op−>setLeftOp(leftOp.read());
18 op−>setRightOp(rightOp.read());
19 result .write(op−>execute())
20 wait();
21 }
22 }
23
24 SC CTOR(ArimethicUnit) {
25 SC CTHREAD(executeOp, clock.pos());
26 watching(reset .delayed() == true);
27 }
28 };

The execute() operation in the above listing is dynamically dispatched, that means it is determined
at runtime, which implementation of the function is actually invoked on a call. It depends on the
actual class type of the polymorphic object that is passed through the input-port operation, which
implementation is taken. If an instance of class Add is sent, its execute() method is invoked, if an
instance of Sub arrives, its execute() method is invoked. It does not matter which kind of arithmetic
operation is sent, as long as it provides an appropriate implementation of execute().

It is also very easy to add new functionality to ArithmeticUnit without even having the need for
touching its implementation. Imagine, that a multiplication should be added to the set of arithmetic
operations. The only thing to be done is to derive a new class, call it Multiply, from ArithOperation
and to overload its execute() function accordingly. Now, ArithmeticUnit is able to also handle multi-
plication operations without having touched its implementation. Clearly spoken, with this mechanism
it is possible to introduce new functionality into a module from outside and, in the ideal case, without
having knowledge of the implementation details of the module itself.

And finally, though polymorphism is a feature that can make synthesis quite complex, it also
offers some interesting potential for optimization. If a synthesis tool can statically determine, which
set of classes and especially which set of different method implementations are actually used with a
polymorphic object, it can prevent the other method implementations from synthesis. Take again
a look to the arithmetic operations example above. If a synthesis tool can determine, that only
instances of class Add are sent through the operation port, it will not synthesize any circuits for
the other operations. That means the arithmetic unit is automatically optimally tailored for specific
requirements just by usage, without having the need for doing manual adaptations. But this kind of
optimization depends on statical analysis and is limited, if the functionality of systems parts depends
on the environment of a system, that is not taken into account for synthesis.

A polymorphic object in SystemC-Plus is simply declared as follows:

PolyObject<RootClass> polyObj;

This can also be seen in lines 4 and 10 in Listing 3. The assignment rules are the same as used
from C++, for example instances of the root class and instances of all classes derived from the root
class can be assigned to a polymorphic object, provided, that an appropriate assignment operator is
available. The only requirement on the root class and all objects that are assigned to a polymorphic
object is, that their class declarations include a polymorphic specifier:

Listing 4: The polymorphic specifier
class ArithOperation {

POLYMORPHIC(ArithOperation);
...

};

class Add : public ArithOperation {
POLYMORPHIC(Add);
...

};

Members of a polymorphic object are always accessed by means of the −> operator, indicating
that the access is dynamically dispatched. But, as used from C++, only those functions are actually
dynamically dispatched, which are declared virtual.

3.1.3 Global Objects and Communication

Communication and data exchange between concurrent components in hardware is usually based on
signals. That does not only mean that data is exchanged via busses or serial links, it does also mean
that every activity is triggered by activating a certain signal or by assigning a certain bit pattern to a
bunch of signals. This kind of interface is not very handy, because just a bit pattern usually does not
speak for itself. A method based interface does provide a lot of advantages. For example an interface
that consists of the methods add(), subtract(), multiply(), and divide() is much clearer than the bit
patterns ”00”, ”01”, ”10” and ”11”. In the first case a designer can figure out what kind of operation
he is actually invoking just by having a look at the code. In the latter case an assignment of two bits
to two signals does not explain anything. And if an interface does not only consist of two signals but
of a few dozens, it becomes even more complicated. Also the risk is higher, that a wrong operation is
triggered only because of accidently toggling or permuting some bits.

Though a method interface would be preferable, it is not just possible to let concurrent components
communicate through normal C++ objects, because these objects do not provide mechanisms for
handling concurrent accesses. Just accessing an instance of a class that may be declared as a member
of a module from within different concurrent processes at the same time, would not produce any
observable conflict but would also show absolutely improper behavior in the sense of hardware. For that
reason, SystemC-Plus introduces its so-called global objects. Global objects are similar to Ada95’s [2]
protected objects which are mainly used to communicate between concurrent threads. Global object
posses built-in mechanisms for arbitrating concurrent accesses and guarantee for mutual exclusive
access. They also have a certain notion of time, in particular of the communication protocol, wherefore

their behavior is simulated cycle accurate during a SystemC-Plus simulation run. As a tribute to
keeping automated synthesis, the applied communication protocol is fixed, but the scheduling can be
determined by the designer within certain borders.

The following listing illustrates the application of global objects by means of a very simple produc-
er/consumer example. The consumer generates somehow a random number each clock cycle and puts
it into a bounded buffer that is shared between the producer and the consumer process. A consumer
process periodically gets an element out of the buffer. Mutual exclusive access is guaranteed by the
global object.

Listing 5: Using global objects
1 SC MODULE(ProdCons) {
2
3 GlobalObject< RoundRobin, FiFoBuffer< int, 8 > > sharedBuffer;
4
5 sc in clk clock;
6 sc in< bool > reset ;
7 sc out< int > output;
8
9 void producer() {

10 sharedBuffer.subscribe ();
11 if (reset == true) {
12 sharedBuffer. reset ();
13 }
14 wait();
15 while (true) {
16 GLOBAL PROCEDURE CALL(sharedBuffer, put(randomNumber()));
17 wait();
18 }
19 }
20
21 void consumer() {
22 int val ;
23 sharedBuffer.subscribe ();
24 if (reset == true) {
25 output.write (0);
26 }
27 wait();
28 while (true) {
29 GLOBAL FUNCTION CALL(sharedBuffer, get(), val);
30 output.write(val);
31 wait();
32 }
33 }
34
35 //Constructor
36 SC CTOR(ProdCons) {
37 SC CTHREAD(producer, clock.pos());
38 watching(reset.delayed() == true);
39
40 SC CTHREAD(consumer, clock.pos());
41 watching(reset.delayed() == true);
42 }
43 };

A global object requires two template parameters to be specified at declaration. The first one must
denote a scheduler, which determines the scheduling strategy that is applied on scheduling concurrent
accesses, and the second one may be any synthesisable user-defined class for implementing the actual
functionality of the global object. Declaration of a global object is shown in line 3 of the above
example. The used scheduler, RoundRobin, is one that is already provided by the OOHWLib and which
implements a round robin scheduling strategy. A user may also define his own schedulers by deriving
them from a special base class and with respect to some coding guidelines for their implementation.
The second argument passed in the example is assumed to be some kind of parameterizable FIFO
buffer, which can store up to eight elements of type int. A designer may freely pass his own classes
instead.

One requirement that must be satisfied by all user-defined classes that are passed to a global object
is, that each of its member functions being called from outside the object - in the example above these
are the functions put() and get() - must be declared as so-called guarded methods. A guarded method
declaration associates a certain guard condition with a method. Only if the associated guard condition
is true, a caller of that method will be regarded for scheduling, otherwise it is blocked. This mechanism
allows atomic test and access for global objects. For example the guard condition of the get() method
should check, if there are still elements left in the buffer, the guard condition of the put() method
should check, if the buffer is not already full. Every client that calls a method on a global object,
but does not succeed, because it calls a function whose guard condition is actually false or because it
looses arbitration, is blocked at the call site, until it finally succeeds. Note, that a client may be even
blocked forever.

Global objects can be bound to other global objects of the same type across module boundaries,
analogue to a port binding. It is therefore not only possible to connect processes within the same
module by global objects, but also processes that are located in different modules, spread over the
whole system hierarchy. This feature allows in principle to equip a module with a method interface
instead of a signal based interface, since it is possible to make its functionality accessible through a
global object.

But the modelling comfort offered by global objects comes along with some limitations. For instance
global objects must only be accessed from within SC CTHREADs, driven by the same clock net.
Furthermore an access to a global object does always need at least three clock cycles as a tribute that
has to be paid to the fixed communication protocol and to automatic synthesis.

3.1.4 Templates

Templates are not directly an object-oriented feature. VHDL, for example, provides the possibility
to use generic parameters for implementing parameterizable entities. But C++’ template mechanism
combined with object-orientation offers much more modelling power, especially because C++ allows to
pass types and in particular class types as template arguments and not only scalar values, expressions
respectively, as in VHDL.

Since classes may comprise a significant amount of functionality, the behavior of a module or even
a system may be completely changed just by passing varying classes for instantiation. One obvious
application is to provide different implementations of a functionality for different purposes. Taking for
example the arithmetic operations from above, two different Multiply classes may be provided for use.
One class that implements a fast multiplication algorithm that would result in a larger circuit after
synthesis and another implementation, that implements a slower multiplication algorithm, but which
would need less area. Dependent on specific needs, one of these implementations may be chosen and
passed as a template argument to a module that is accordingly modelled as a template.

Templates also serve for modelling flexible data containers as demonstrated in line 3 of Listing 5.
The buffer being passed as argument to the global object declaration is modelled as a template, whose
size and element type can be arbitrary chosen just by passing different template arguments.

4 Synthesis

SystemC-Plus main focus lies on providing synthesisable object-oriented features. Since there are
already sophisticated synthesis techniques existing, starting from RT or behavioral level, the synthesis
we are proposing translates an object-oriented input description into a description that can be processed
by existing logic synthesis tools without any problem. Therefore we are mainly concentrating on
removing the object-oriented constructs of the initial description by replacing them by behavioral
equivalent constructs on RT or behavioral level. The synthesis step we propose will not directly
produce a gate net list and can be seen as high level synthesis.

The basic idea of our synthesis [10, 4] approach is the translation of objects into bit vectors, which
can be easily processed by existing logic synthesis tools, like the CoCentric R© SystemC Compiler. As
shown in Figure 3, each data member of an object is individually encoded as a bit vector first and then
the concatenation of all encoded data members forms the state space of a synthesized object. Each
data member can still be identified as slice of the bit vector being synthesized for an object, wherefore

accesses to these members can be translated into accesses to the appropriate slice. Likewise all member
functions must be translated into a form, that operates on the synthesized bit vector instead of the
original object.

attributeA : TypeA
attributeB : TypeB
attributeC : TypeC

:MyClass

n0Bit#:

Figure 3: Transforming an object into a bit vector

If a polymorphic object or an object that is assigned to a polymorphic object is synthesized, the
resulting vector also is augmented by a tag, which is used to identify the actual class membership of an
object at runtime. By means of this tag, the appropriate implementation for a dynamically dispatched
function, i.e. declared virtual, is chosen during a function call.

For a global object and its clients, the structure being outlined in Figure 4 is synthesized. Calls
to a global object are transformed into a handshake protocol based on signal communication. The
channels in the figure comprise the necessary handshake signals and also busses for arguments and
return values. An arbiter that schedules concurrent accesses to the former global object - the server
in Figure 4 - is also automatically synthesized. The scheduling functionality is generated according
to the scheduler that was specified at a global object declaration. The functionality of the server is
synthesized from the user defined class that was passed at the global object declaration.

client 1

client i

client n

server

Channels

Arbiter

Figure 4: Synthesized client/server structure

As mentioned before, SystemC-Plus is focussing on synthesis. That means not every kind of C++
code, for example classes from the STL, can just be taken and included in a SystemC-Plus model.
There are some restrictions as tribute to the statical nature of hardware. The most striking restrictions
may be the ban on using pointers in general and the ban of dynamic memory allocation/deallocation.
The first restriction was introduced because we claim pointers not to be efficiently synthesisable. The
second restriction follows from the first one and also from the fact, that circuits can not simply be newly
created or destroyed at runtime in hardware. Possibly reconfigurable hardware does provide a new
perspective for the future but this is out of the scope of our actual work. All the different restrictions
that have to be regarded for modelling with SystemC-Plus are summed up in an LRM [1], that is

not standardized but available to the public [8]. Additional restrictions may have to be considered
dependent on the back-end synthesis tool, that is targeted.

Another topic for synthesis of object-oriented models is optimization. Object-oriented models tend
towards a certain overhead regarding area and timing when not applying sophisticated optimization
techniques. But there is also certain potential for optimizations and for reducing the produced overhead
significantly. But even if a certain overhead will remain, and the synthesized designs may be not quite as
efficient in resource usage as a design that was completely handcrafted, we claim this to be acceptable,
if the productivity of the design process can be significantly increased by applying object-oriented
techniques. We will not go into further details here, since optimization techniques are out of the scope
of this paper.

4.1 ODETTE Synthesis Tool

To proof, that the synthesis techniques outlined in the previous chapter are not just of theoretical
nature, a synthesis tool that performs the proposed synthesis of object-oriented constructs is actually
under development within the framework of the ODETTE project. The final prototype is scheduled
for the end of this year. The prototype is expected to already support all features listed in the previous
sections. It should also be able to apply various optimization techniques specific to object-oriented
modelling. The input of the synthesis tool is a SystemC-Plus model, the generated output is a SystemC
description, that can be processed by the CoCentric R© SystemC Compiler. Prototypes that will first
not support all features listed above are scheduled for the near future. The synthesis tool and design
methodologies based on SystemC-Plus will be evaluated by industrial partners from the automotive
and telecommunication area.

5 Conclusions

In this work we have shown, that object-orientation offers some very interesting new perspectives for
designing hardware and that it has the potential to increase the productivity in hardware design. We
have also shown, that automatic synthesis of object-oriented constructs can actually be performed.

References

[1] P. J. Ashenden, R. Biniasch, T. Fandrey, E. Grimpe, A. Schubert, T. Schubert, Input Language
Subset Specification (formal), ODETTE Deliverable, 2001, http://odette.offis.de

[2] J. Barnes, Programming in Ada95, 2nd Edition, Addison-Wesley, 1999
[3] M. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison-Wesley, 1990.
[4] E. Grimpe and F. Oppenheimer, Aspects of Object-Oriented Hardware Modelling with SystemC-

Plus, Proceedings of the FDL’01, Lyon, France, September 2001.
[5] E. Grimpe and F. Oppenheimer, Object Oriented High Level Synthesis Based on SystemC, Pro-

ceedings of the ICECS 2001, Malta, September 2001.
[6] IEEE Std 1076, 2000 Edition, IEEE Standard VHDL Language Reference Manual, IEEE, 2000
[7] IEEE Std 1076.6, Standard For VHDL Register Transfer Level Synthesis,

http://www.eda.org/siwg/
[8] ODETTE - Object-oriented co-DEsign and functional Test TEchniques, IST project of the Com-

mission of the European Communities, http://offis.odette.de
[9] Open SystemC Initiative, http://www.SystemC.org.

[10] M. Radetzki, Synthesis of Digital Circuits from Object-Oriented Specifications, Dissertation at
University of Oldenburg, 2000

[11] Synopsys, Inc., CoCentric R© SystemC Compiler Behavioral Modeling Guide, 2001
[12] Synopsys, Inc., CoCentric R© SystemC Compiler RTL User and Modeling Guide, 2001
[13] Various contributors, Functional Specification for SystemC 2.0 - Final - Version 2.0-M, 2001.
[14] Various contributors, SystemC Version 2.0 Users’s Guide, 2001.

