
SystemC and the Future of Design Languages: Opportunities for Users and
Research

Grant Martin
Cadence Berkeley Labs
gmartin@cadence.com

Abstract

There has been a lot of discussion, and a lot of
confusion, about the various existing and new design
languages recently. SystemC, SystemVerilog, Verilog-
2005, e, Vera, PSL/Sugar, UML, Analogue and Mixed-
Signal versions of Verilog and VHDL make the world a
veritable alphabet soup. This paper briefly looks at the
evolving world of design languages from a SystemC
perspective. Although a design "language war" may
seem imminent, there are strong prospects for peaceful
coexistence between languages, and flows that connect
them together. And such flows give tremendous
opportunities for users of languages to significantly
improve their methodologies. In addition, the needs of
advanced system and System-on-Chip (SoC) design turn
up a number of interesting research opportunities for
those involved in language-based design. The paper
will finish by covering some of these methodology and
research possibilities, including those opened up by
further evolution in SystemC to include SW task and OS
scheduler modelling.

1. Introduction

Recently there has been a tremendous discussion about
design languages. Added to the discussion about SystemC
and SystemVerilog are the many other design and
verification languages extant: IEEE 1364 Verilog,
VHDL, Vera, e, PSL/Sugar, and the analogue and mixed-
signal versions of Verilog and VHDL. Designers of
complex SoCs involving internally created and externally
created IP blocks might arguably be asked to deal with all
nine of these design languages.

Designers are quite likely to be very confused about
these languages - the right use models, and where they are
going. The IEEE 1364 Verilog committee has a plan to
specify next generation Verilog - 1364-2005 (although it
may take a little longer for an approved standard).
Verilog 2005 will be based on suggestions for new
capabilities from vendors, users and industry associations
such as Accellera (likely to donate SystemVerilog, in
some version, to the IEEE).

In the meantime, Open SystemC International (OSCI)
has a well-formulated plan to standardise SystemC 2.1 via

the IEEE, and will follow that up with further open
community work to evolve the language based on user
needs. For example, activities in 2003 include clarifying
and defining the most useful abstraction levels for
“transaction-level modeling”; looking at defining a
standard synthesisable subset of SystemC; and continuing
to examine, in a SystemC 3.0 context, the modelling of
software tasks and operating system scheduling algorithms
to allow more realistic and accurate modelling of mixed
HW-SW systems. And of course, during 2003, the
SystemC Verification Library (SCVL) has achieved
production status, and the Language Reference Manual for
2.0/2.1 has been completed.

2. SystemC for system-level design

Despite the noise of the press and of standards bodies,
which at times places SystemC and SystemVerilog in
opposition or competition, it is readily seen that they have
complementary roles in the process of moving designs
from specification to implementation. From the early
definition of SystemC 2.0 and onwards, it was absolutely
clear that SystemC is a system design language [1]. It
allows design teams to model, and verify designs
expressed at true system levels of abstraction, refine these
to reflect implementation choices, and finally link the
system model to hardware design implementation and
verification. SystemC enables the creation of a
transaction-level prototype model of a design platform,
which allows high-speed verification of system-wide
testbenches, prior to further refinement. SystemC is a
natural modelling language for dealing with all manner of
issues concerned with mixed hardware-software systems
and platforms.

3. The evolution of HDLs

Verilog is of course a primary design implementation
and verification hardware description language, and
Verilog-2005 will strengthen this. Enhanced features for
hardware specification and synthesis, verification
testbench creation, and IP protection will improve its use
for advanced hardware design. Verilog-2005 will be able
to link to design and verification models created in
SystemC using advanced simulation environments; thus

Proceedings of the 16th Symposium on Integrated Circuits and Systems Design (SBCCI’03)

0-7695-2009-X/03 $17.00 © 2003 IEEE

hardware designers will be able to reuse system level
models to validate their designs in a true system context.

However, many of the improvements to Verilog are
adding features already present in the other important
HDL: VHDL has had a number of these advanced
capabilities for many years. Neither Verilog nor VHDL,
however, allow designers to work at the true system levels
of abstraction.

This reinforces a point often forgotten about design
languages - they have ceilings, as well as floors. Just as
SystemC is not an optimal language for HDL and gate
level design, Verilog-2005 (and SystemVerilog) is not the
right language for system-level modelling and building
high performance system prototypes. It is the flow
between languages which enables a high productivity and
low risk design process, not an attempt to use a single
language for all purposes.

4. New methods and flow possibilities

It is thus appropriate to remember that SystemC also
has a ceiling. While it will likely evolve in its 3.0 version
to include software task modelling and scheduling
capabilities, it is not a software development environment.

Recent developments in the UML software modelling
world on UML 2.0, to be finalised this year, promise
greatly improved capabilities for system software
modelling and code generation, especially for embedded
real-time systems [2]. One very promising area for future
methodology work is to establish a truly trilingual world,
where software specified and modelled in UML can code-
generate platform-optimised software tasks, which can
then be simulated within a SystemC-based transaction-
level platform model, with appropriate OS models. The
hardware part of the design will move into Verilog-2005
or VHDL based implementation and verification, re-using
the functional prototypes built earlier in the process.
Peaceful co-existence is the goal for our truly multi-
lingual world.

5. Language-based design research

There are considerable opportunities available to help
users in this multi-lingual world through advancing the
science of language-based design. Among the areas of
greatest need are:
• Paths to implementation from high level design

descriptions. For example, first generation
behavioural synthesis from behavioural formats did
not succeed for many reasons, primarily poor quality
of results. SystemC and higher level abstractions
offer modelling power, but leave the implementation
primarily to manual refinement methods. The issue

of high-quality, high-performance code generation
(“system synthesis”) from model to either HW or SW
implementation on a specific target platform
(standard cell, structured ASIC or FPGA for
hardware; target-optimised C code for software) still
has many research opportunities. The emerging
field of co-processor synthesis may hold the most
promise for advances here.

• The “models of computation” issue for system-level
modelling is still open. How best to model all the
constituent elements of a hybrid HW-SW system;
how to build a system model by composing
subsystem models; how to best verify the resulting
system - these are still quite open questions.
Building linked flows between system specification,
platform models and hardware and software
implementations requires semantically correct design
transformations which could use more formalisation.

• Transaction-level modelling of HW-SW platforms in
SystemC holds promise for true system model
interoperability, to be a basis for at least one level of
system synthesis, and to be a well-defined part of a
modelling and refinement methodology, but there is a
strong need within the OSCI and external frameworks
to reflect not just industrial experience, but language-
based design theory in developing the most
appropriate context for this methodology.

• Verification methodologies have been going through
great change in recent years with the emergence of
HVLs and the guidance of methodology experts. But
verification is not yet a science; the academic
community has not spent enough time developing
formal underpinnings for the complete verification
problem - including directed semi-formal approaches
using simulation, as well as formal methods.

5. Conclusions

This has been a very brief overview of the current
issues and opportunities for building new and improved
design and verification methodologies with SystemC and
other associated languages. The prospects for improved
language-based design approaches are encouraging.

10. References

[1] T. Grötker, S. Liao, G. Martin and S. Swan, System Design
with SystemC, Kluwer Academic Publishers, Boston, 2002.�

[2] L. Lavagno, G. Martin and B. Selic (editors), UML for Real:
Design of Embedded Real-Time Systems, Kluwer Academic
Publishers, Dordrecht, 2003.

Proceedings of the 16th Symposium on Integrated Circuits and Systems Design (SBCCI’03)

0-7695-2009-X/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

