
Memory System Connectivity Exploration.�

Peter Grun Nikil Dutt Alex Nicolau
pgrun@cecs.uci.edu dutt@cecs.uci.edu nicolau@cecs.uci.edu

Center for Embedded Computer Systems
University of California, Irvine, CA 92697-3425, USA

Abstract

In programmable embedded systems, the memory subsys-
tem represents a major cost, performance and power bottle-
neck. To optimize the system for such different goals, the
designer would like to perform Design Space Exploration,
evaluating different memory modules from a memory IP li-
brary, and selecting the most promising designs. However,
while the memory modules are important, the rate at which
the memory system can produce the data for the CPU is sig-
nificantly impacted by the connectivity architecture between
the memory subsystem and the CPU. Thus, it is critical to
consider the connectivity architecture early in the design flow,
in conjunction with the memory architecture. We present a
connectivity architecture exploration approach, evaluating a
wide range of cost, performance, and energy connectivity ar-
chitectures. When coupled with our memory modules explo-
ration approach, we can significantly improve the system be-
havior. We present experiments on a set of large real-life
benchmarks, showing significant performance improvements
for varied cost and power characteristics, allowing the de-
signer to tailor the performance, cost and power of the pro-
grammable embedded system.

1 Introduction

In contemporary programmable embedded systems, mem-
ory represents a major cost, performance and power bottle-
neck [21]. In order to optimize the system for such varying
goals, the system designer would like to evaluate different
combinations of memory modules from an IP library, such as
caches, SRAMs, DMAs, etc., performing Design Space Ex-
ploration (DSE) of the memory architecture. However, the
cost, bandwidth and power footprint of the memory system
is influenced by both the memory modules employed, as well
as the connectivity components which transfer the data be-
tween the memory modules, and the CPU. While the memory
modules configuration and characteristics are important, of-
ten the connectivity structure has a comparably large impact
on the system performance, cost and power; thus it is critical
to consider connectivity early in the design flow. We present
here such an approach, where we perform connectivity explo-
ration, evaluating a wide range of connectivity configurations
using components from a connectivity IP library, such as stan-
dard on-chip busses (e.g., AMBA busses [1]), MUX-based

�This work was partially supported by grants from NSF (MIP-9708067),
DARPA (F33615-00-C-132) and a Motorola Fellowship.

connections, and off-chip busses. Our approach significantly
improves the performance of the system for varying cost, and
power consumption, allowing the designer to best tradeoff the
different goals of the system.

In [12] we presented the exploration of the memory mod-
ules, based on the access patterns exhibited by the application,
assuming a simple connectivity model. In this paper we ex-
tend this work by performing connectivity exploration in con-
junction with the memory modules exploration, to improve
the behavior of the memory-connectivity system. There are
two possible approaches to improving the memory system be-
havior: (a) a synthesis-oriented, optimization approach, where
the result is a unique “best” solution, and (b) an exploration-
based approach, where different memory system architectures
are evaluated, and the most promising designs following a
pareto-like shape are provided as the result, allowing the de-
signer to further refine the choice, according to the goals of
the system. In this paper we follow the second approach. We
guide the design space search towards the pareto points in dif-
ferent design spaces (such as the cost/performance, and per-
formance/power spaces), pruning the non-interesting designs
early in the exploration process, and avoiding full simulation
of the design space.

In Section 2 we present related work in the area of connec-
tivity and memory architecture exploration, in Section 3 we
present the flow of our approach. In Section 4 we use an ex-
ample application to illustrate our exploration strategy, and in
Section 5 we show the details of our Connectivity Exploration
(ConEx) algorithm. We conclude with a set of experiments
showing the cost, performance and power tradeoffs obtained
by our coupled memory and connectivity exploration, and a
short summary in Section 7.

2 Related Work

There has been related work in four main areas: (I) High-
Level Synthesis, (II) System-on-Chip core-based systems, (III)
Interface synthesis. and (IV) Layout and routing of connec-
tivity wiring,

(I) In High-Level Synthesis, Narayan et al. [20] synthe-
size the bus structure and communication protocols to imple-
ment a set of virtual communication channels, trading off the
width of the bus and the performance of the processes com-
municating over it. Daveau et al. [7] present a library based
exploration approach, where they use a library of connectiv-
ity components, with different costs and performance. We
complement these approaches by exploring the connectivity

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

design space in terms of all the three design goals: cost, per-
formance and power simultaneously.

Wuytack et. al. [22] present an approach to increase mem-
ory port utilization, by optimizing the memory mapping and
code reordering. Our technique complements this work by ex-
ploring the connectivity architecture, employing connectivity
components from an IP library. Catthoor et al. [2] address
memory allocation, packing the data structures according to
their size and bitwidth into memory modules from a library,
to minimize the memory cost, and optimize port sharing. For-
niciari et al. [9] present a simulation based power estima-
tion for the HW/SW communication on system-level busses,
aimed at architectural exploration. We use the connectivity
and memory power/area estimation models from [2] to drive
our connectivity exploration.

(II) In the area of System-on-Chip architectures, Givargis
et al. [10] present a connectivity exploration technique which
employs different encoding techniques to improve the power
behavior of the system. However, due to their platform-based
approach, where they assume a pre-designed architecture plat-
form which they tune for power, they do not consider the cost
of the architecture as a metric. Drinic et al. [18] present an on-
chip bus network design methodology, optimizing the alloca-
tion of the cores to busses to reduce the latency of the transfers
across the busses. Lahiri et al. [17] present a methodology for
the design of custom System-on-Chip communication archi-
tectures, which propose the use of dynamic reconfiguration
of the communication characteristics, taking into account the
needs of the application.

(III) Recent work on interface synthesis [4], [5] present
techniques to formally derive node clusters from interface tim-
ing diagrams. These techniques can be used to provide an ab-
straction of the connectivity and memory module timings in
the form of Reservation Tables [15]. Our algorithm uses the
Reservation Tables [11, 14] for performance estimation, tak-
ing into account the latency, pipelining, and resource conflicts
in the connectivity and memory architecture.

(IV) At the physical level, the connectivity layout and wiring
optimization and estimation has been addressed. Chen et al.
[3] present a method to combine interconnect planning and
floorplanning for deep sub-micron VLSI systems, where com-
munication is increasingly important. Deng et al. [8] propose
the use of a 2.5-D layout model, through a stack of single-
layer monolithic ICs, to significantly reduce wire length. We
use the area models presented in [3] and [8] to drive our high-
level connectivity exploration approach.

To our knowledge, none of the previous approaches have
addressed connectivity exploration in conjunction with mem-
ory modules architecture, considering simultaneously the cost,
performance, and power of the system, using a library of con-
nectivity components including standard busses (such as AMBA
[1], mux-based connections, and off-chip busses). By pruning
the non-interesting designs early in the design flow, and simu-
lating only the most promising architectures, we allow the de-
signer to explore the connectivity architectures space, to best
trade off the different goals of the system.

3 Our approach

Figure 1 shows the flow of our approach. The Connec-
tivity Exploration (ConEx) approach is part of the MemorEx
Memory System Exploration environment. Starting from the
input application in C, our Access Pattern-based Memory Ex-
ploration (APEX) [12] algorithm first extracts the most active
access patterns exhibited by the application data structures,
and explores the memory module configurations to match the
needs of these access patterns; however, it assumes a sim-
ple connectivity model. Our ConEx Connectivity Exploration
approach starts from this set of selected memory modules con-
figurations generated by APEX, and explores the most promis-
ing connectivity architectures, which best match the perfor-
mance, cost and power goals of the system. Since the com-
plete design space is very large, and evaluating all possible
combinations in general is intractable, at each stage we prune
out the non-interesting design configurations, and consider for
further exploration only the points which follow a pareto-like
curve shape in the design space.

C Application

Access Pattern based Memory
 Modules Exploration (APEX)

Selected Memory Modules
 Configurations

Cost

Perf
Memory Modules
 Design Space

Cost

Perf
Connectivity and Memory
 Modules Design Space

Selected Connectivity and Memory
 Modules Configurations

Connectivity Exploration
 (ConEx)

 Memory System
Exploration (MemorEx)

Figure 1. The flow of our Exploration Approach.

Starting from a memory architecture containing a set of
memory modules, we map the communication channels be-
tween these modules, the off-chip memory and the CPU to
connectivity modules from a connectivity IP library. Figure 2
(a) shows the connectivity architecture template for an exam-
ple memory architecture, containing a cache, a stream buffer,
an on-chip SRAM, and an off-chip DRAM. The communica-
tion channels between the on-chip memory modules, the off-
chip memory modules and the CPU can be implemented in
many ways. One naive implementation is where each commu-
nication channel is mapped to one connectivity module from
the library. However, while this solution may generate good
performance, in general the cost is prohibitive. Instead, we
cluster the communication channels into groups based on their
bandwidth requirement, and map each such cluster to connec-
tivity modules. Figure 2 (b) shows an example connectivity
architecture implementing the communication channels, con-
taining two on-chip busses, a dedicated connection, and an
off-chip bus.

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

CPU

CACHE SRAM
FIFO

STREAM
BUFFER

Off−chip DRAM

(a)

CPU

CACHE SRAM
FIFO

STREAM
BUFFER

CHIP BOUNDARY

AMBA AHB BUS

AMBA APB BUS

 Dedicated
connection

Off−chip DRAM

Off−chip BUS

I/O

(b)

Connectivity
 Exploration

COMMUNICATION CHANNELS

CH1

CH4

CH2
CH3

CH5 CH6

Figure 2. (a) The Connectivity Architecture Template and
(b) An Example Connectivity Architecture.

4 Illustrative example

We use the compress benchmark (SPEC95) to illustrate the
cost, performance, and power trade-offs generated by our con-
nectivity exploration approach. The benchmark contains a
varied set of data structures and access patterns, presenting
interesting opportunities for customizing the memory archi-
tecture and connectivity.

The connectivity exploration is part of our larger mem-
ory exploration approach. First we perform Access Pattern-
based Memory Exploration (APEX) [12], to determine a set
of promising memory modules architectures. For each such
memory modules architecture, a set of different connectiv-
ity architectures are possible, each resulting in different cost,
performance and power characteristics. Our Connectivity Ex-
ploration approach (ConEx) starts from the memory modules
architectures generated by APEX, and explores the connec-
tivity configurations, using components from a connectivity
library (such as the AMBA busses [1], MUX-based connec-
tions, etc.), trading off the cost, performance and power for
the full memory system, taking into account both the memory
modules and the connectivity structure.

For our compress illustrative example benchmark, APEX
selects the most promising memory modules configurations.
The resulting memory architectures employ different combi-
nations of modules such as caches, SRAMs, and DMA-like
custom memory modules storing well-behaved data such as
linked lists, arrays of pointers, streams, etc. [12]. Figure 3
shows the memory modules architectures explored by APEX
for the compress example. The X axis represents the cost of
the memory modules in basic gates, and the Y axis repre-
sents the overall miss ratio (we assume that accesses to on-
chip memory such as the cache or SRAM are hits, and ac-
cesses to off-chip memory are misses). APEX prunes the non-

Figure 3. The most promising memory modules architec-
tures for the compress benchmark.

interesting designs, on the inside of the pareto curve, choosing
only the most promising cost/performance architectures for
further exploration. The points labeled 1 through 5 represent
the selected memory modules designs, which will be used as
the starting point for the connectivity exploration.

Each such selected memory architecture may contain mul-
tiple memory modules with different characteristics, and com-
munication requirements. For each such architecture, differ-
ent connectivity structures, with varied combinations of con-
nectivity modules from the library may be used. For instance,
the memory modules architecture labeled with 3 in Figure 3
contains a cache, a memory module for stream accesses, a
memory module for self-indirect 1 array references [12], and
an off-chip DRAM. When using dedicated or MUX-based
connections from the CPU to the memory modules, the la-
tency of the accesses is small, at the expense of longer con-
nection wires. Alternatively, when using a bus-based con-
nection, such as the AMBA System bus (ASB) [1], the wire
length decreases, at the expense of increased latency due to
the more complex arbitration needed. Similarly, when us-
ing wider busses, with pipelined or split transaction accesses,
such as the AMBA High-performance bus (AHB) [1], the
wiring and bus controller area increases further. Moreover, all
these considerations impact the energy footprint of the sys-
tem. For instance, longer connection wires generate larger
capacitances, which may lead to increased power consump-
tion.

Figure 4 shows the ConEx connectivity exploration for the
compress benchmark. The X axis represents the cost of the
memory and connectivity system. The Y axis represents the
average memory latency, including the latency due to the mem-
ory modules, as well as the latency due to the connectivity.
The average memory latency is reduced from 10.6 cycles to
6.7 cycles, representing a 36% improvement 2, while trading

1We call self-indirect the array references which use the current array el-
ement value to compute the index for the next array element access [12].

2Please note that in order to keep the figures clear, we did not include the
uninteresting designs exhibiting very bad performance (many times worse
than the best designs). While those designs would increase even further the

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

Figure 4. The connectivity architecture exploration for the
compress benchmark.

off the cost of the connectivity and memory modules.
Alternatively, for energy-aware designs, similar tradeoffs

are obtained in the cost/power or the performance/power de-
sign spaces (the energy consumption tradeoffs are presented
in the Section 6). In this manner we can customize the connec-
tivity architecture, thus substantially improving the memory
and connectivity system behavior, and allowing the designer
to trade off the different goals of the system.

5 Connectivity Exploration Algorithm

Our Connectivity Exploration (ConEx) algorithm is a heuris-
tic method to evaluate a wide range of connectivity architec-
tures, using components from a connectivity IP library, and
selecting the most promising architectures, which best trade-
off the connectivity cost, performance and power.

Figure 5 shows our Connectivity Exploration algorithm.
The input to our ConEx algorithm is the application in C, a
set of selected memory modules architectures (generated by
the APEX exploration step [12]), and the connectivity library.
Our algorithm generates as output the set of most promising
connectivity/memory modules architectures, in terms of cost,
performance and power.

For each memory modules architecture selected in the APEX
memory modules exploration stage [12], multiple connectiv-
ity implementations are possible. Starting from these memory
modules architectures, we explore the connectivity configu-
rations by taking into account the behavior of the complete
memory and connectivity system, allowing the designer to
tradeoff the cost, performance and power of the design. The
ConEx algorithm proceeds in two phases: (I) Evaluate con-
nectivity configurations (II) Select most promising designs.

(I) Evaluate connectivity configurations. For each memory
architecture selected from the previous APEX Memory Mod-
ules Exploration phase [12], we evaluate different connectiv-
ity architecture templates and connectivity allocations using
components from the connectivity IP library. We estimate the
cost, performance and power of each such connectivity archi-

performance variation, in general they are not useful.

Procedure ConnectivityExploration(Memory Modules Architecture mem arch)
Input: The C Application and the Memory Modules Architecture mem arch,

the Connectivity Library
Output: The most promising Connectivity Design Points
begin

Profile the Memory Modules Architecture mem arch
Construct the Bandwidth Requirement Graph (BRG)
Allocate each arc in the BRG to a logical connection cluster
connect design points = �
dof

if number of logical connections � max cost constraint
Allocate the logical connections to physical connections

from the Connectivity Library
Estimate the Cost, Performance and Power of connecitivity architecture
Add this connectivity architecture to connect design points

Merge the two logical connection clusters with lowest bandwidth requirement
hierarchycally into a larger cluster

gwhile(more clusters can be merged)
return connect design points;

end

Algorithm ConEx
Input: C Application, Selected Memory Modules Architectures
Output: The Combined Memory Modules and Connectivity Design Points

w/ best cost/performance/power trade-offs
begin

Phase I:
combined design points = �
For each selected memory module architecture mem arch

connect design points = ConnectivityExploration(mem arch)
Select the local most promising connectivity desing points from

connect design points
Add selected design points to combined design points

Phase II:
Simulate the design points from combined design points
Select the global most promising combined memory modules and connectivity

design points from combined design points
end

Figure 5. Connectivity Exploration algorithm.

tecture, and perform an initial selection of the most promising
design points for further evaluation.

We start by profiling the bandwidth requirement between
the memory modules and CPU for each memory modules ar-
chitecture selected from APEX, and constructing a Bandwidth
Requirement Graph (BRG). The Bandwidth Requirement Graph
(BRG) represents the bandwidth requirements of the applica-
tion for the given memory modules architecture. The nodes
in the BRG represent the memory and processing cores in the
system (such as the caches, on-chip SRAMs, DMAs, off-chip
DRAMs, the CPU, etc.), and the arcs represent the channels
of communication between these modules. The BRG arcs are
labeled with the average bandwidth requirement between the
two modules.

Each arc in the BRG has to be implemented by a connec-
tivity component from the connectivity library. One possi-
ble connectivity architecture is where each arc in the BRG is
assigned to a different component from the connectivity li-
brary. However, this naive implementation may result in ex-
cessively high cost, since it does not try to share the connec-
tivity components. In order to allow different communication
channels to share the same connectivity module, we hierarchi-
cally cluster the BRG arcs into logical connections, based on
the bandwidth requirement of each channel. We first group the
channels with the lowest bandwidth requirements into logical

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

connections. We label each such cluster with the cumulative
bandwidth of the individual channels, and continue the hier-
archical clustering. For each such clustering level, we then
explore all feasible assignments of the clusters to connectivity
components from the library, and estimate the cost, perfor-
mance, and power of the memory and connectivity system.

(II) Select most promising designs. In the second phase of
our algorithm, for each memory and connectivity architecture
selected from Phase I we perform full simulation to determine
accurate performance and power metrics. We then select the
best combined memory and connectivity candidates from the
simulated architectures.

While in the Phase I we selected separately for each mem-
ory module architecture the best connectivity configurations,
in the Phase II we combine the selected designs and choose
the best overall architectures, in terms of both the memory
module and connectivity configuration.

The different design points present different cost, perfor-
mance and power characteristics. In general, these three opti-
mization goals are incompatible. For instance, when optimiz-
ing for performance, the designer has to give up either cost, or
power. Typically, the pareto points in the cost/performance
space have a poor power behavior, while the pareto points
in the performance/power space will incur a large cost. We
select the most promising architectures using three scenar-
ios: (a) In a power-constrained scenario, where the energy
consumption has to be less then a threshold value, we de-
termine the cost/performance pareto points, to optimize for
cost and performance, while keeping the power less then the
constraint, (b) In a cost-constrained scenario, we compute the
performance/power pareto points, and (c) In a performance-
constrained scenario, we compute the pareto points in the cost-
power space, optimizing for cost and power, while keeping the
performance within the requirements.

(a) In the power-constrained scenario, we first determine
the pareto points in the cost-performance space. A design is
on the pareto curve if there is no other design which is bet-
ter in both cost and performance. We then collect the en-
ergy consumption information for the selected designs. The
points on the cost-performance pareto curve may not be opti-
mal from the the energy consumption perspective. From the
selected cost-performance pareto points we choose only the
ones which satisfy the energy consumption constraint. The
designer can then tradeoff the cost and performance of the
system to best match the design goals.

(b) In the cost-constrained scenario, we start by determin-
ing the pareto points in the performance-power space, and use
the system cost as a constraint. Conversely, the pareto points
in the performance-power space are in general not optimal
from the cost perspective.

(c) When using the performance as a constraint, we deter-
mine the cost-power pareto points.

For performance and power estimation purposes we use a
time-sampling technique [16], which significantly speeds the
simulation process. While this may not be highly accurate
compared to full simulation, the fidelity is sufficient to make
good incremental decisions guiding the search through the de-

sign space. To verify that our heuristic guides the search to-
wards the pareto curve of the design space, we compare the
exploration results with a full simulation of all the memory
and connectivity mapping alternatives for two large examples.
Indeed, as shown in Section 6, our algorithm successfully
finds the best points in the design space, without requiring
full simulation of the design space.

6 Experiments

We performed a set of experiments on a number of large
multimedia and scientific applications to show the performance,
cost and power tradeoffs generated by our approach.

The memory architectures selected by our memory mod-
ules exploration presented in [12] have been used as start-
ing point for our connectivity exploration. We present here
the experimental results taking into account the cost, perfor-
mance and power for the full memory system, including both
the memory and the connectivity architecture.

Our exploration algorithm guides the search towards the
points on the pareto curve 3 of the design space, pruning out
the non-interesting designs.

In order to verify that our Design Space Exploration (DSE)
approach successfully finds the points on the pareto curve,
we compare the exploration algorithm results with the actual
pareto curve obtained by fully simulating the design space.

6.1 Experimental Setup

We simulated the design alternatives using our simulator
based on the SIMPRESS [19] cycle accurate memory model,
and SHADE [6]. We assumed a processor based on the SUN
SPARC 4, and we compiled the applications using gcc. The
library of connectivity modules contains information such as
the resource usage, latency, pipelining, parallelism, split trans-
action model, and bitwidth, and the exploration algorithm se-
lects automatically the different connectivity architectures, es-
timates, and prunes the design space, guiding the search to-
wards the most promising designs.

We used a set of large real-life multimedia and scientific
benchmarks. Compress and Li are from SPEC95, and Vocoder
is a GSM voice encoding application.

We use a time-sampling [16] estimation to guide the walk
through the design space, pruning out the designs which are
not interesting. The time sampling alternates “on-sampling”
and “off-sampling” periods, assuming a ratio of 1/9 between
the on and off time intervals. We then use full simulation
for the most promising designs, to further refine the tradeoff
choices. The time-sampling estimation does not have a very
good absolute accuracy compared to full simulation. How-
ever, we use it only for relative incremental decisions to guide
the design space search, and the estimation fidelity is suffi-
cient to make good pruning decisions.

3Assuming a two dimensional cost-performance design space, a design is
on the pareto curve, if there is no other design which is better in terms of both
cost and performance

4The choice of SPARC was based on the availability of SHADE and a
profiling engine; however our approach is clearly applicable to any other (em-
bedded) processor as well

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

6.2 Results

Figure 6 shows the analysis of the most promising design
points for the compress benchmark. The X axis represents
the cost of the memory and connectivity architecture, and the
Y axis represents the average memory latency including both
the memory and connectivity latencies (e.g., due to the cache
misses, bus multiplexing, or bus conflicts). The design points
a through k represent the most promising selected memory-
connectivity architectures. Architectures a and b represent
two instances of a traditional cache-only memory configura-
tion, using the AMBA AHB split transaction bus, and a dedi-
cated connection. The architectures c through k represent dif-
ferent instances of novel memory and connectivity architec-
tures, employing SRAMs to store data which is accessed of-
ten, DMA-like memory modules to bring in predictable, well-
known data structures (such as lists) closer to the CPU, and
stream buffers for stream-based accesses. Architecture c con-
tains a linked-list DMA-like memory module, implementing
an self-indirect data structure, using a MUX-based connec-
tion. This architecture generates a roughly 10% performance
improvement for a small cost increase, over the best tradi-
tional cache architecture (b). The architecture d represents
the same memory configuration as c, but with a connectivity
containing both a MUX-based structure and an AMBA APB
bus. Similarly, architectures e through k make use of addi-
tional linked-list DMAs, stream buffers, and SRAMs, with
MUX-based, AMBA AHB, ASB and APB connections. Ar-
chitecture g generates a roughly 26% performance improve-
ment over the best traditional cache architecture (b), for a
roughly 30% memory cost increase. Architecture k shows
the best performance improvement, of roughly 30% over the
best traditional cache architecture, for a larger cost increase.
Clearly, our memory-connectivity exploration approach gen-
erates a significant performance improvement for varied cost
configurations, allowing the designer to select the most promis-
ing designs, according to the available chip space and perfor-
mance requirements.

Figure 6. Analysis of the cost/perf pareto architectures for
the compress benchmark.

In the following we present the exploration results for the
compress, li, and vocoder benchmarks. Due to space limita-

tions, we show only the selected most promising cost/performance
designs, in terms of their cost (in basic gates), average mem-
ory latency, and average energy consumption per access. For
more experimental results, please refer to [13]. In Table 1
the first column shows the benchmarks, the second, third and
fourth columns show the cost, average memory latency and
energy consumption for the selected design simulations. The
simulation results show significant performance improvement
for varied cost and power characteristics of the designs, for
all the benchmarks. For instance, when using different mem-
ory and connectivity configurations, the performance of the
compress and li benchmarks varies by an order of magnitude.
The energy consumption of these benchmarks does not vary
significantly, due to the fact that the connectivity consumes a
small amount of power compared to the memory modules.

Benchark Cost Avg mem latency Avg energy
[gates] [cycles] [nJ]

Compress 480775 69.66 13.24
512232 62.76 13.52
512332 9.69 13.80
512532 8.35 14.36
519388 7.49 14.44
561112 7.34 14.39
604941 6.80 14.47
649849 6.60 14.39
664029 6.19 14.46
760543 6.05 14.47
793971 6.03 14.54
862176 6.01 14.31
895604 5.99 14.38

li 480775 57.59 10.42
494992 57.48 10.43
512232 50.29 10.70
512332 9.18 10.98
512532 7.76 11.54
605767 6.97 11.57
664029 6.87 11.58
760543 6.84 11.59

vocoder 156806 16.37 5.05
169370 13.28 5.33
169481 5.09 5.61
169703 3.60 6.17
175865 3.40 6.43

Table 1. Selected cost/performance designs for the connec-
tivity exploration.

Table 2 presents the coverage of the pareto points obtained
by our memory modules and connectivity exploration approach.
Column 1 shows the benchmark, and column 2 shows the cat-
egory: Time represents the total computation time required for
the exploration, Coverage shows the percentage of the points
on the pareto curve actually found by the exploration. Aver-
age distance shows the average percentile deviation in terms
of cost, performance and energy consumption, between the
pareto points which have not been covered, and the closest
exploration point which approximates them. Column 3 repre-
sents the results for the Pruned exploration approach, where
only the most promising design points from the memory mod-
ules exploration are considered for connectivity space explo-
ration. Column 4 shows the Neighborhood exploration re-
sults, where the design points in the neighborhood of the se-
lected points are also included in the exploration, and the last
Column shows the results for the brute-force full space explo-

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

ration, where all the design points in the exploration space are
fully simulated, and the pareto curve is fully determined.

The average cost, performance and power distance shows
the average distance between the points on the pareto curve
and the corresponding closest points found by the exploration,
as the percentile deviation on the corresponding axes. If this
average distance is small, means that even though a design
point on the pareto curve has not been found, another design
with very close characteristics (cost, performance, power) is
provided (there are no significant gaps in the coverage of the
pareto curve).

Benchmark Category Pruned Neighborhood Full
compress Time 2 days 2 weeks 1 month

Coverage [%] 50% 65% 100%
Avg. cost dist [%] 0.84% 0.59% 0%
Avg. perf. dist [%] 0.77% 0.60% 0%

Avg. energ. dist [%] 0.42% 0.28% 0%
vocoder Time 24 min 29 min 50 min

Coverage [%] 83% 100% 100%
Avg. cost dist [%] 0.29% 0% 0%
Avg. perf. dist [%] 2.96% 0% 0%

Avg. energ. dist [%] 0.92% 0% 0%

Table 2. Pareto coverage results for our Memory Architec-
ture Exploration Approach.

In the Pruned approach during each Design Space Explo-
ration phase we select for further exploration only the most
promising architectures, in the hope that we will find the pareto
curve designs without fully simulating the design space. Neigh-
borhood exploration expands the design space explored, by
including also the points in the neighborhood of the points
selected by the Pruned approach. We omitted the li example
from Table 2 due to the fact that the Full simulation was in-
feasible.

The Pruned approach significantly reduces the computa-
tion time required for the exploration. Moreover, full simula-
tion of the design space is often infeasible. While in general,
due to its heuristic nature, the pruned approach may not find
all the points on the pareto curve, in practice it finds a large
percentage of them, or approximates them well with close al-
ternative designs. For instance, the coverage for the vocoder
example shows that 83% of the designs on the pareto curve
are successfully found by the Pruned exploration. While the
Pruned approach does not find all the points on the pareto
curve, the average difference between the points on the pareto
and the corresponding closest points found by the exploration
is 0.29% for cost, 2.96% for performance, and 0.92% for en-
ergy. In the compress example the computation time is re-
duced from 1 month for the Full simulation to 2 days, at the
expense of less pareto coverage. However, while only 50%
of the compress designs are exactly matched by the Pruned
approach, for every pareto point missed, very close replace-
ments points are generated, resulting in an average distance
of 1.95%, 1,83%, and 1.76% in terms of cost, performance
and power to the closest overall pareto point. Thus, our ex-
ploration strategy successfully finds most of the design points
on the pareto curve without fully simulating the design space.

Moreover, even if it misses some of the pareto points, it pro-
vides replacement architectures, which approximate well the
pareto designs.

The Neighborhood exploration explores a wider design space
than the Pruned approach, providing a better coverage of the
pareto curve, at the expense of more computation time. For
instance, for the Vocoder example, it finds 100% of the pareto
points.

By performing combined exploration of the memory and
connectivity architecture, we obtain a wide range of cost, per-
formance and power tradeoffs. Clearly, this type of results are
difficult to determine by analysis alone, and require a system-
atic exploration approach to allow the designer to best trade
off the different goals of the system.

7 Summary

In order to optimize the memory system for varying goals,
such as power, cost and performance, the system designer
would like to evaluate different memory architectures, mix-
ing and matching different memory modules from a memory
IP library, and performing Design Space Exploration (DSE).
However, while the memory modules are important, often the
connectivity between these modules have an equally signifi-
cant impact on the system behavior. We presented here our
Connectivity Exploration approach (ConEx), which trades off
the connectivity performance, power and cost, using connec-
tivity modules from a library, and allowing the designer to
choose the most promising connectivity architectures for the
specific design goals. We generate significant performance
improvements for incremental costs, and explore a design space
beyond the one traditionally considered, allowing the designer
to efficiently target the system goals. By intelligently explor-
ing the design space, we guide the search towards the archi-
tectures with the best cost/performance/power characteristics,
and avoid the expensive full simulation of the design space.

We presented a set of experiments on large multimedia and
scientific examples, where we explored a wide range of cost,
performance and power tradeoffs, by customizing the mem-
ory and connectivity architecture to fit the needs of the appli-
cations.

8 Acknowledgments
We would like to acknowledge and thank Ashok Halambi,

Prabhat Mishra, Srikanth Srinivasan, Partha Biswas, Aviral
Shrivastava, Radu Cornea and Nick Savoiu, for their contri-
butions to the EXPRESS/ EXPRESSION project.

References

[1] ARM AMBA Bus Specification.
http://www.arm.com/armwww.ns4/html/AMBA?OpenDocument.

[2] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachter-
gaele, and A. Vandecappelle. Custom Memory Management
Methodology. Kluwer, 1998.

[3] H-M. Chen, H. Zhou, F. Young, D. Wong, H. Yang, and
N. Sherwani. Integrated floorplanning and interconnect plan-
ning. In ICCAD, 1999.

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

[4] P. Chou, R. Ortega, and G. Borriello. Interface co-synthesis
techniques for embedded systems. In ICCAD, 1995.

[5] K.-S. Chung, R. Gupta, and C. L. Liu. Interface co-synthesis
techniques for embedded systems. In ICCAD, 1996.

[6] R. Cmelik and D. Keppel. Shade: A fast instruction set sim-
ulator for execution profiling. Technical report, SUN MI-
CROSYSTEMS, 1993.

[7] J-M. Daveau, T. Ben Ismail, and A. Jerraya. Synthesis of
system-level communication by an allocation-based approach.
In ISSS, 1995.

[8] Y. Deng and W. Maly. Interconnect characteristics of 2.5-d
system integration scheme. In ISPD, 2001.

[9] W. Forniciari, D. Sciuto, and C. Silvano. Power estimation for
architectural exploration of hw/sw communication on system-
level busses. In CODES, 1999.

[10] Tony Givargis and Frank Vahid. Interface exploration for re-
duced power in core-based systems. In ISSS, 1998.

[11] P. Grun, N. Dutt, and A. Nicolau. Memory aware compilation
through accurate timing extraction. In DAC, 2000.

[12] P. Grun, N. Dutt, and A. Nicolau. Apex: Access pattern based
memory architecture exploration. In To appear in ISSS, 2001.

[13] P. Grun, N. Dutt, and A. Nicolau. Connectivity exploration for
embedded systems. Technical report, University of California,
Irvine, 2001.

[14] P. Grun, A. Halambi, N. Dutt, and A. Nicolau. RTGEN: An
algorithm for automatic generation of reservation tables from
architectural descriptions. In ISSS, 1999.

[15] J. Hennessy and D. Patterson. Computer Architecture: A quan-
titative approach. Morgan Kaufmann Publishers Inc, San Ma-
teo, CA, 1990.

[16] R. Kessler, M. Hill, and D. Wood. A comparison of trace-
sampling techniques for multi-megabyte caches. Technical re-
port, University of Wisconsin, 1991.

[17] K. Lahiri, A Raghunatan, G. Lakshminarayana, and S. Dey.
Communication architecture tuners: A methodology for hte
deisng of high-performance communication architectures for
systems-on-chip. In DAC, 2000.

[18] Seapahn Maguerdichian, Milenko Drinic, and Darko Kirovski.
Latency-driven design of multi-purpose systems-on-chip. In
DAC, 2001.

[19] P. Mishra, P. Grun, N. Dutt, and A. Nicolau. Processor-memory
co-explotation driven by a memory-aware architecture descrip-
tion language. In International Conference on VLSI Design,
Bangalore, India, 2001.

[20] Sanjiv Narayan and Daniel D. Gajski. Protocol generation for
communication channels. In DAC, 1994.

[21] S. Przybylski. Sorting out the new DRAMs. In Hot Chips
Tutorial, Stanford, CA, 1997.

[22] S. Wuytack, F. Catthoor, G. de Jong, B. Lin, and H. De Man.
Flow graph balancing for minimizing the required memory
bandwith. In ISSS, La Jolla, CA, 1996.

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

